kaggle-seizure-detection:宾夕法尼亚大学和梅奥诊所癫痫检测挑战的解决方案

上传者: 42129005 | 上传时间: 2023-03-11 19:33:27 | 文件大小: 57KB | 文件类型: ZIP
Kaggle 癫痫检测挑战 解决方案。 卷积神经网络以一种糟糕的方式应用于原始 EEG 数据:来自不同通道的特征仅在隐藏层中组合。 描述了更好的解决方案。

文件下载

资源详情

[{"title":"( 60 个子文件 57KB ) kaggle-seizure-detection:宾夕法尼亚大学和梅奥诊所癫痫检测挑战的解决方案","children":[{"title":"kaggle-seizure-detection-master","children":[{"title":"merger","children":[{"title":"merge_csv.py <span style='color:#111;'> 480B </span>","children":null,"spread":false},{"title":"avg_patients.py <span style='color:#111;'> 1.02KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 20B </span>","children":null,"spread":false},{"title":"avg_csv.py <span style='color:#111;'> 1.26KB </span>","children":null,"spread":false},{"title":"merge_patients.py <span style='color:#111;'> 965B </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 1.06KB </span>","children":null,"spread":false},{"title":"script.py <span style='color:#111;'> 2.12KB </span>","children":null,"spread":false},{"title":"early","children":[{"title":"__init__.pyc <span style='color:#111;'> 168B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 20B </span>","children":null,"spread":false},{"title":"cnn","children":[{"title":"conv_net.py <span style='color:#111;'> 6.45KB </span>","children":null,"spread":false},{"title":"conv_layer.py <span style='color:#111;'> 1.63KB </span>","children":null,"spread":false},{"title":"__init__.pyc <span style='color:#111;'> 172B </span>","children":null,"spread":false},{"title":"softmax_layer.pyc <span style='color:#111;'> 1.97KB </span>","children":null,"spread":false},{"title":"feature_extractor.pyc <span style='color:#111;'> 2.02KB </span>","children":null,"spread":false},{"title":"softmax_layer.py <span style='color:#111;'> 1.19KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 20B </span>","children":null,"spread":false},{"title":"global_pooling_layer.py <span style='color:#111;'> 286B </span>","children":null,"spread":false},{"title":"hidden_layer.pyc <span style='color:#111;'> 2.45KB </span>","children":null,"spread":false},{"title":"hidden_layer.py <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false},{"title":"conv_layer.pyc <span style='color:#111;'> 2.26KB </span>","children":null,"spread":false},{"title":"feature_extractor.py <span style='color:#111;'> 3.58KB </span>","children":null,"spread":false},{"title":"global_pooling_layer.pyc <span style='color:#111;'> 840B </span>","children":null,"spread":false},{"title":"conv_net.pyc <span style='color:#111;'> 5.74KB </span>","children":null,"spread":false}],"spread":false},{"title":"cnn_trainer","children":[{"title":"__init__.pyc <span style='color:#111;'> 180B </span>","children":null,"spread":false},{"title":"loader.py <span style='color:#111;'> 4.82KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 20B </span>","children":null,"spread":false},{"title":"loader.pyc <span style='color:#111;'> 4.70KB </span>","children":null,"spread":false},{"title":"random_train_iterator.pyc <span style='color:#111;'> 1.70KB </span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'> 3.91KB </span>","children":null,"spread":false},{"title":"random_train_iterator.py <span style='color:#111;'> 868B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"README.md <span style='color:#111;'> 413B </span>","children":null,"spread":false},{"title":"seizure","children":[{"title":"__init__.pyc <span style='color:#111;'> 170B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 20B </span>","children":null,"spread":false},{"title":"cnn","children":[{"title":"conv_net.py <span style='color:#111;'> 7.03KB </span>","children":null,"spread":false},{"title":"conv_layer.py <span style='color:#111;'> 1.63KB </span>","children":null,"spread":false},{"title":"logreg_layer.pyc <span style='color:#111;'> 3.22KB </span>","children":null,"spread":false},{"title":"global_pool_layer.py <span style='color:#111;'> 286B </span>","children":null,"spread":false},{"title":"__init__.pyc <span style='color:#111;'> 174B </span>","children":null,"spread":false},{"title":"feature_extractor.pyc <span style='color:#111;'> 2.01KB </span>","children":null,"spread":false},{"title":"global_pool_layer.pyc <span style='color:#111;'> 852B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 20B </span>","children":null,"spread":false},{"title":"hidden_layer.pyc <span style='color:#111;'> 2.47KB </span>","children":null,"spread":false},{"title":"logreg_layer.py <span style='color:#111;'> 1.98KB </span>","children":null,"spread":false},{"title":"hidden_layer.py <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false},{"title":"win <span style='color:#111;'> 857B </span>","children":null,"spread":false},{"title":"conv_layer.pyc <span style='color:#111;'> 2.29KB </span>","children":null,"spread":false},{"title":"feature_extractor.py <span style='color:#111;'> 3.58KB </span>","children":null,"spread":false},{"title":"wout <span style='color:#111;'> 863B </span>","children":null,"spread":false},{"title":"tmp.py <span style='color:#111;'> 268B </span>","children":null,"spread":false},{"title":"conv_net.pyc <span style='color:#111;'> 6.47KB </span>","children":null,"spread":false}],"spread":false},{"title":"cnn_trainer","children":[{"title":"__init__.pyc <span style='color:#111;'> 182B </span>","children":null,"spread":false},{"title":"loader.py <span style='color:#111;'> 4.83KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 20B </span>","children":null,"spread":false},{"title":"loader.pyc <span style='color:#111;'> 4.74KB </span>","children":null,"spread":false},{"title":"stratified_train_iterator.py <span style='color:#111;'> 2.33KB </span>","children":null,"spread":false},{"title":"random_train_iterator.pyc <span style='color:#111;'> 1.74KB </span>","children":null,"spread":false},{"title":"stratified_train_iterator.pyc <span style='color:#111;'> 2.93KB </span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'> 4.34KB </span>","children":null,"spread":false},{"title":"random_train_iterator.py <span style='color:#111;'> 866B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"reader.py <span style='color:#111;'> 720B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明