安然电子邮件分析

上传者: 42128988 | 上传时间: 2025-12-29 18:23:02 | 文件大小: 80KB | 文件类型: ZIP
安然电子邮件分析是对美国能源巨头安然公司破产前内部通信的一次深度挖掘,这涉及到大量的数据处理和文本分析。安然公司在2001年因为大规模财务欺诈而轰然倒塌,留下了数百万份电子邮件作为研究和调查的宝贵资料。这些邮件揭示了公司内部的工作模式、决策过程以及可能存在的不当行为。 在进行安然电子邮件分析时,我们通常会用到数字命令语言(DIGITAL Command Language,DCL),这是一种早期的编程语言,常用于数据管理和文件操作。在分析过程中,DCL可以用来检索、排序、过滤和处理电子邮件数据,以便于研究人员理解和提取关键信息。 分析步骤通常包括以下几个方面: 1. 数据预处理:我们需要将电子邮件数据从原始格式(如 mbox 或 eml)转换为更便于分析的结构化格式,如CSV或JSON。这个过程可能涉及解析邮件头信息(发件人、收件人、主题、日期等)和邮件正文。 2. 文本清洗:由于电子邮件数据可能存在拼写错误、HTML标记、非标准格式等问题,因此需要进行文本清洗,去除噪声,如停用词、特殊字符和HTML标签。 3. 内容分析:通过关键词搜索、情感分析、主题建模等方法,我们可以理解电子邮件中的主要话题和情绪。这有助于揭示员工间的沟通模式,可能的内部交易,以及管理层的决策思路。 4. 社交网络分析:通过分析收发件人关系,我们可以构建社交网络图,识别关键人物和信息流动路径。这有助于理解权力结构和信息传递的模式。 5. 时间序列分析:电子邮件的时间戳提供了事件发生的顺序,可以帮助我们追踪决策过程和事件的发展。 6. 隐私保护:在进行分析时,必须注意保护个人隐私,去除可能识别个人身份的信息,如姓名、地址等。 7. 结果可视化:通过图表和图形将分析结果展示出来,使复杂的数据关系易于理解。 安然电子邮件分析是一门涉及数据挖掘、文本分析、社交网络理论和统计学的综合学科。使用像DCL这样的工具,我们可以深入探究大型企业内部的沟通模式,为类似事件的预防和管理提供宝贵的经验教训。

文件下载

资源详情

[{"title":"( 46 个子文件 80KB ) 安然电子邮件分析","children":[{"title":"Enron-Email-Analysis-master","children":[{"title":"evaluation","children":[{"title":"evaluate_poi_identifier.py <span style='color:#111;'> 703B </span>","children":null,"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'> 67B </span>","children":null,"spread":false},{"title":"SampleAnalysis.R <span style='color:#111;'> 8.26KB </span>","children":null,"spread":false},{"title":"Enron","children":[{"title":"TextAnalysis.R <span style='color:#111;'> 5.04KB </span>","children":null,"spread":false}],"spread":true},{"title":"final_project","children":[{"title":"emails_by_address","children":[{"title":"from_credit.williams@enron.com <span style='color:#111;'> 2.49KB </span>","children":null,"spread":false},{"title":"to_credit.williams@enron.com <span style='color:#111;'> 64.79KB </span>","children":null,"spread":false},{"title":"to_ets.nelson@enron.com <span style='color:#111;'> 4.13KB </span>","children":null,"spread":false},{"title":"to_legal.hall@enron.com <span style='color:#111;'> 29.78KB </span>","children":null,"spread":false},{"title":"to_houston.ward@enron.com <span style='color:#111;'> 49.07KB </span>","children":null,"spread":false},{"title":"to_trading.williams@enron.com <span style='color:#111;'> 54.72KB </span>","children":null,"spread":false},{"title":"from_pr.palmer@enron.com <span style='color:#111;'> 2.50KB </span>","children":null,"spread":false},{"title":"from_houston.ward@enron.com <span style='color:#111;'> 35.35KB </span>","children":null,"spread":false},{"title":"to_legal.schuler@enron.com <span style='color:#111;'> 15.52KB </span>","children":null,"spread":false},{"title":"from_legal.taylor@enron.com <span style='color:#111;'> 26.51KB </span>","children":null,"spread":false},{"title":"from_trading.williams@enron.com <span style='color:#111;'> 3.41KB </span>","children":null,"spread":false},{"title":"from_legal.hall@enron.com <span style='color:#111;'> 5.43KB </span>","children":null,"spread":false},{"title":"to_pr.palmer@enron.com <span style='color:#111;'> 41.15KB </span>","children":null,"spread":false},{"title":"to_legal.taylor@enron.com <span style='color:#111;'> 108.02KB </span>","children":null,"spread":false},{"title":"from_legal.schuler@enron.com <span style='color:#111;'> 820B </span>","children":null,"spread":false},{"title":"from_ets.nelson@enron.com <span style='color:#111;'> 1.74KB </span>","children":null,"spread":false}],"spread":false},{"title":"tester.py <span style='color:#111;'> 4.40KB </span>","children":null,"spread":false},{"title":"poi_id.py <span style='color:#111;'> 2.31KB </span>","children":null,"spread":false},{"title":"poi_email_addresses.py <span style='color:#111;'> 3.40KB </span>","children":null,"spread":false}],"spread":true},{"title":"feature_selection","children":[{"title":"find_signature.py <span style='color:#111;'> 1.40KB </span>","children":null,"spread":false}],"spread":true},{"title":"svm","children":[{"title":"svm_author_id.py <span style='color:#111;'> 725B </span>","children":null,"spread":false}],"spread":true},{"title":"regression","children":[{"title":"finance_regression.py <span style='color:#111;'> 2.06KB </span>","children":null,"spread":false}],"spread":true},{"title":"pca","children":[{"title":"eigenfaces.py <span style='color:#111;'> 4.87KB </span>","children":null,"spread":false}],"spread":true},{"title":"run.SampleAnalysis.R <span style='color:#111;'> 8.25KB </span>","children":null,"spread":false},{"title":"decision_tree","children":[{"title":"dt_author_id.py <span style='color:#111;'> 739B </span>","children":null,"spread":false}],"spread":true},{"title":"sent_folders <span style='color:#111;'> 14.86KB </span>","children":null,"spread":false},{"title":"naive_bayes","children":[{"title":"nb_author_id.py <span style='color:#111;'> 1.10KB </span>","children":null,"spread":false}],"spread":true},{"title":"choose_your_own","children":[{"title":"class_vis.py <span style='color:#111;'> 1.61KB </span>","children":null,"spread":false},{"title":"your_algorithm.py <span style='color:#111;'> 1.37KB </span>","children":null,"spread":false},{"title":"prep_terrain_data.py <span style='color:#111;'> 1.70KB </span>","children":null,"spread":false}],"spread":false},{"title":"datasets_questions","children":[{"title":"explore_enron_data.py <span style='color:#111;'> 602B </span>","children":null,"spread":false}],"spread":false},{"title":"tools","children":[{"title":"startup.py <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false},{"title":"feature_format.py <span style='color:#111;'> 4.29KB </span>","children":null,"spread":false},{"title":"parse_out_email_text.py <span style='color:#111;'> 1.25KB </span>","children":null,"spread":false},{"title":"email_preprocess.py <span style='color:#111;'> 2.57KB </span>","children":null,"spread":false},{"title":"email_preprocess.pyc <span style='color:#111;'> 2.15KB </span>","children":null,"spread":false}],"spread":false},{"title":"validation","children":[{"title":"validate_poi.py <span style='color:#111;'> 800B </span>","children":null,"spread":false}],"spread":false},{"title":"outliers","children":[{"title":"enron_outliers.py <span style='color:#111;'> 394B </span>","children":null,"spread":false},{"title":"outlier_cleaner.py <span style='color:#111;'> 445B </span>","children":null,"spread":false},{"title":"outlier_removal_regression.py <span style='color:#111;'> 2.32KB </span>","children":null,"spread":false}],"spread":false},{"title":"text_learning","children":[{"title":"vectorize_text.py <span style='color:#111;'> 2.08KB </span>","children":null,"spread":false}],"spread":false},{"title":"k_means","children":[{"title":"k_means_cluster.py <span style='color:#111;'> 2.28KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明