grasp-and-lift:Grasp-and-Lift EEG 检测 Kaggle 比赛

上传者: 42128315 | 上传时间: 2023-03-04 20:14:31 | 文件大小: 17.11MB | 文件类型: ZIP
抓举 Grasp-and-Lift EEG 检测 Kaggle 比赛 设置 需要 pip 和 python 克隆仓库git clone https://github.com/jrubin01/grasp-and-lift.git cd grasp-and-lift 创建虚拟环境virtualenv venv source venv/bin/activate 安装所需的库pip install -r requirements.txt 启动 ipython ipython notebook

文件下载

资源详情

[{"title":"( 36 个子文件 17.11MB ) grasp-and-lift:Grasp-and-Lift EEG 检测 Kaggle 比赛","children":[{"title":"grasp-and-lift-master","children":[{"title":"raw_eeg_low_freq.ipynb <span style='color:#111;'> 9.97KB </span>","children":null,"spread":false},{"title":"beat_the_benchmark_original.ipynb <span style='color:#111;'> 11.95KB </span>","children":null,"spread":false},{"title":"gradient_boosting_standard_scaler_0.4-30.ipynb <span style='color:#111;'> 12.52KB </span>","children":null,"spread":false},{"title":"filterbank_gradient_boosting_standard_scaler.py <span style='color:#111;'> 7.24KB </span>","children":null,"spread":false},{"title":"raw_eeg_full_train.py <span style='color:#111;'> 3.55KB </span>","children":null,"spread":false},{"title":"split_train_test_all_events_itertools_recurrent_sliding_windows.ipynb <span style='color:#111;'> 14.94KB </span>","children":null,"spread":false},{"title":"cross_val_auc.csv <span style='color:#111;'> 210B </span>","children":null,"spread":false},{"title":"benchmark_csp_logisticregression.ipynb <span style='color:#111;'> 243.67KB </span>","children":null,"spread":false},{"title":"simple_grasp_cross-validation.py <span style='color:#111;'> 4.08KB </span>","children":null,"spread":false},{"title":"scripts_index.txt <span style='color:#111;'> 3.88KB </span>","children":null,"spread":false},{"title":"split_train_test_in_memory.ipynb <span style='color:#111;'> 31.63KB </span>","children":null,"spread":false},{"title":"raw_eeg_low_freq.py <span style='color:#111;'> 4.31KB </span>","children":null,"spread":false},{"title":"testbook.ipynb <span style='color:#111;'> 53.50KB </span>","children":null,"spread":false},{"title":"benchmark_gradient_boosting.ipynb <span style='color:#111;'> 14.44KB </span>","children":null,"spread":false},{"title":"split_train_test_benchmark_recurrent_sliding_windows.ipynb <span style='color:#111;'> 10.81KB </span>","children":null,"spread":false},{"title":"getting_started","children":[{"title":"getting_started.ipynb <span style='color:#111;'> 234.52KB </span>","children":null,"spread":false},{"title":"evoked._aud_l.png <span style='color:#111;'> 42.93KB </span>","children":null,"spread":false},{"title":"epochs_data.mat <span style='color:#111;'> 16.24MB </span>","children":null,"spread":false}],"spread":false},{"title":"split_train_test_all_events_itertools.ipynb <span style='color:#111;'> 13.39KB </span>","children":null,"spread":false},{"title":"cross_val_auc.png <span style='color:#111;'> 9.91KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 587B </span>","children":null,"spread":false},{"title":"replace_csp_logisticregression.py <span style='color:#111;'> 6.75KB </span>","children":null,"spread":false},{"title":"filterbank_gradient_boosting_standard_scaler.ipynb <span style='color:#111;'> 13.81KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 113B </span>","children":null,"spread":false},{"title":"split_train_test_benchmark_original.ipynb <span style='color:#111;'> 12.25KB </span>","children":null,"spread":false},{"title":"benchmark_csp_logisticregression.py <span style='color:#111;'> 7.22KB </span>","children":null,"spread":false},{"title":"split_train_test_filterbank_logistic_regression.ipynb <span style='color:#111;'> 13.99KB </span>","children":null,"spread":false},{"title":"raw_eeg_full_train.ipynb <span style='color:#111;'> 9.16KB </span>","children":null,"spread":false},{"title":"gradient_boosting_all_events_itertools.ipynb <span style='color:#111;'> 16.29KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 538B </span>","children":null,"spread":false},{"title":"first_digit_touch_plot_0.png <span style='color:#111;'> 331.30KB </span>","children":null,"spread":false},{"title":"split_train_test_all_events_csp.ipynb <span style='color:#111;'> 15.58KB </span>","children":null,"spread":false},{"title":"replace_csp_logisticregression.ipynb <span style='color:#111;'> 757.28KB </span>","children":null,"spread":false},{"title":"ensemble.ipynb <span style='color:#111;'> 6.15KB </span>","children":null,"spread":false},{"title":"hand_start_plot_0.png <span style='color:#111;'> 275.55KB </span>","children":null,"spread":false},{"title":"split_train_test_pywavelets.ipynb <span style='color:#111;'> 19.44KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明