tf_EEGNet:这是EEGNet的张量流实现-源码

上传者: 42128270 | 上传时间: 2021-06-22 15:24:33 | 文件大小: 3.03MB | 文件类型: ZIP
笔记 不能保证所有实现都是正确的,未经原始作者检查,只能从本文描述中重新实现。 原始纸 包含EEGNet的原始论文和模型 tf_EEGNet 这是EEGNet的张量流实现 有关更多信息,请参见 tf_ConvNet 这是ConvNet的tensorflow实现 有关更多信息,请参见 留一题实验 型号:tf_EEGNet BCI_competion 2a的预处理 1. A trial contained 2s and was extraced 0.5s after the cue was given. 2. A 4-38Hz bandpass was done by a causal 6-order Butterworth fliter. 3. The MI dataset was sampled at 250Hz. And it was resampled to 128Hz for E

文件下载

资源详情

[{"title":"( 11 个子文件 3.03MB ) tf_EEGNet:这是EEGNet的张量流实现-源码","children":[{"title":"tf_EEGNet-master","children":[{"title":"tf_EEGnet","children":[{"title":"tf_EEGNet_my.py <span style='color:#111;'> 5.09KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 2.17KB </span>","children":null,"spread":false},{"title":"image","children":[{"title":"tensorboard_p300.png <span style='color:#111;'> 182.24KB </span>","children":null,"spread":false},{"title":"tensorboard_MI.png <span style='color:#111;'> 174.91KB </span>","children":null,"spread":false}],"spread":true},{"title":"original paper","children":[{"title":"EEGModels.py <span style='color:#111;'> 17.60KB </span>","children":null,"spread":false},{"title":"LICENSE.txt <span style='color:#111;'> 18.44KB </span>","children":null,"spread":false},{"title":"EEGNET_JNE_revision2018_v.01.pdf <span style='color:#111;'> 1.19MB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 7.25KB </span>","children":null,"spread":false},{"title":"EEGnet_v1.0.pdf <span style='color:#111;'> 1.67MB </span>","children":null,"spread":false}],"spread":true},{"title":"EEGNet_keras_my.py <span style='color:#111;'> 4.58KB </span>","children":null,"spread":false},{"title":"tf_ConvNet","children":[{"title":"tf_ConvNet.py <span style='color:#111;'> 4.66KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明