rltrader:使用Python和Keras-Quant投资进行深度学习强化学习股票投资,算法交易前沿解决方案简介(修订版)

上传者: 42128141 | 上传时间: 2022-05-12 16:25:26 | 文件大小: 2.31MB | 文件类型: ZIP
使用Python和Keras进行深度学习/强化学习股票投资-定量投资和算法交易的前沿解决方案简介(修订版) 强化学习是一种很好的应用于股票数据学习的自学习机器学习技术。 本书介绍了如何使用Python进行基于强化学习的股票投资模拟程序的开发。 为此,我在理论和代码级别上添加了详细的说明。 通过本书,您将能够理解深度学习和强化学习,并将其用于包括股票投资在内的多个领域。 购买链接 本书涵盖的内容 深度学习与强化学习理论 如何将强化学习应用于股票投资 基于强化学习的股票投资系统开发 采集和处理实际库存数据以进行强化学习 如何通过强化学习来学习库存数据 如何使用学习型强化学习模型 如何基于强化学习定制股票投资系统 首选项 pip install tensorflow==1.15.2 pip install plaidml-keras==0.6.2 pip install mplfinan

文件下载

资源详情

[{"title":"( 43 个子文件 2.31MB ) rltrader:使用Python和Keras-Quant投资进行深度学习强化学习股票投资,算法交易前沿解决方案简介(修订版)","children":[{"title":"rltrader-master","children":[{"title":".gitignore <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"environment.py <span style='color:#111;'> 727B </span>","children":null,"spread":false},{"title":"requirements_plaidml.txt <span style='color:#111;'> 32B </span>","children":null,"spread":false},{"title":"data","children":[{"title":"v1","children":[{"title":"015760.csv <span style='color:#111;'> 422.13KB </span>","children":null,"spread":false},{"title":"005930.csv <span style='color:#111;'> 518.74KB </span>","children":null,"spread":false},{"title":"000270.csv <span style='color:#111;'> 497.96KB </span>","children":null,"spread":false},{"title":"000660.csv <span style='color:#111;'> 305.62KB </span>","children":null,"spread":false},{"title":"015760_rich.csv <span style='color:#111;'> 461.57KB </span>","children":null,"spread":false},{"title":"009240.csv <span style='color:#111;'> 211.32KB </span>","children":null,"spread":false},{"title":"005490.csv <span style='color:#111;'> 449.42KB </span>","children":null,"spread":false},{"title":"009540.csv <span style='color:#111;'> 312.63KB </span>","children":null,"spread":false},{"title":"005930_rich.csv <span style='color:#111;'> 561.75KB </span>","children":null,"spread":false},{"title":"005380.csv <span style='color:#111;'> 498.51KB </span>","children":null,"spread":false},{"title":"051910.csv <span style='color:#111;'> 239.81KB </span>","children":null,"spread":false},{"title":"kospi.csv <span style='color:#111;'> 41.04KB </span>","children":null,"spread":false},{"title":"105560.csv <span style='color:#111;'> 131.10KB </span>","children":null,"spread":false},{"title":"035420.csv <span style='color:#111;'> 220.74KB </span>","children":null,"spread":false},{"title":"035250.csv <span style='color:#111;'> 226.81KB </span>","children":null,"spread":false},{"title":"030200.csv <span style='color:#111;'> 265.60KB </span>","children":null,"spread":false}],"spread":false},{"title":"v2","children":[{"title":"015760.csv <span style='color:#111;'> 207.60KB </span>","children":null,"spread":false},{"title":"005930.csv <span style='color:#111;'> 207.87KB </span>","children":null,"spread":false},{"title":"005380.csv <span style='color:#111;'> 209.91KB </span>","children":null,"spread":false},{"title":"051910.csv <span style='color:#111;'> 210.77KB </span>","children":null,"spread":false},{"title":"068270.csv <span style='color:#111;'> 210.88KB </span>","children":null,"spread":false},{"title":"035420.csv <span style='color:#111;'> 211.17KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"visualizer.py <span style='color:#111;'> 6.63KB </span>","children":null,"spread":false},{"title":"requirements_tf_gpu.txt <span style='color:#111;'> 47B </span>","children":null,"spread":false},{"title":"learners.py <span style='color:#111;'> 23.02KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"agent.py <span style='color:#111;'> 8.48KB </span>","children":null,"spread":false},{"title":"run_tf_gpu.cmd <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 501B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.70KB </span>","children":null,"spread":false},{"title":"creon.py <span style='color:#111;'> 2.01KB </span>","children":null,"spread":false},{"title":"requirements_tf_cpu.txt <span style='color:#111;'> 42B </span>","children":null,"spread":false},{"title":"networks.py <span style='color:#111;'> 8.98KB </span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'> 7.19KB </span>","children":null,"spread":false},{"title":"data_manager.py <span style='color:#111;'> 5.82KB </span>","children":null,"spread":false},{"title":"img","children":[{"title":"e2.1_introduction.jpg <span style='color:#111;'> 516.51KB </span>","children":null,"spread":false},{"title":"front.jpg <span style='color:#111;'> 71.57KB </span>","children":null,"spread":false}],"spread":false},{"title":"settings.py <span style='color:#111;'> 341B </span>","children":null,"spread":false},{"title":"run_plaidml.cmd <span style='color:#111;'> 1.24KB </span>","children":null,"spread":false},{"title":"portal.py <span style='color:#111;'> 1.40KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明