[{"title":"( 35 个子文件 5.55MB ) matlab_snakeplanner:该代码提出了在杂乱环境中的蛇形机器人的规划算法","children":[{"title":"matlab_snakeplanner-master","children":[{"title":"get_list_nodes.m <span style='color:#111;'> 597B </span>","children":null,"spread":false},{"title":"long_snake_path.m <span style='color:#111;'> 4.09KB </span>","children":null,"spread":false},{"title":"plan_path3.avi <span style='color:#111;'> 2.04MB </span>","children":null,"spread":false},{"title":"find_rantarget_point.m <span style='color:#111;'> 725B </span>","children":null,"spread":false},{"title":"vo.m <span style='color:#111;'> 594B </span>","children":null,"spread":false},{"title":"find_target_point_norm.m <span style='color:#111;'> 1.23KB </span>","children":null,"spread":false},{"title":"count_node_rep.m <span style='color:#111;'> 244B </span>","children":null,"spread":false},{"title":"calculate_no_of_rows.m <span style='color:#111;'> 25B </span>","children":null,"spread":false},{"title":"check_if_unvisited_nodes.m <span style='color:#111;'> 282B </span>","children":null,"spread":false},{"title":"get_adj_nodes_norm.m <span style='color:#111;'> 890B </span>","children":null,"spread":false},{"title":"plan_tested.avi <span style='color:#111;'> 461.70KB </span>","children":null,"spread":false},{"title":"plan_path4.avi <span style='color:#111;'> 13.42MB </span>","children":null,"spread":false},{"title":"indexing_voronoi_nodes.m <span style='color:#111;'> 290B </span>","children":null,"spread":false},{"title":"get_ranadj_nodes_norm.m <span style='color:#111;'> 1.84KB </span>","children":null,"spread":false},{"title":"calculate_rows_cols.m <span style='color:#111;'> 385B </span>","children":null,"spread":false},{"title":"get_adj_nodes.m <span style='color:#111;'> 901B </span>","children":null,"spread":false},{"title":"calculate_target_point.m <span style='color:#111;'> 1.03KB </span>","children":null,"spread":false},{"title":"check_previously_visited.m <span style='color:#111;'> 246B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"check_unvisited_nodes.m <span style='color:#111;'> 293B </span>","children":null,"spread":false},{"title":"plan_path2.avi <span style='color:#111;'> 1.34MB </span>","children":null,"spread":false},{"title":"get_ranadj_nodes.m <span style='color:#111;'> 1.84KB </span>","children":null,"spread":false},{"title":"tested_path4.avi <span style='color:#111;'> 460.85KB </span>","children":null,"spread":false},{"title":"check_blackout.m <span style='color:#111;'> 268B </span>","children":null,"spread":false},{"title":"voronoi.png <span style='color:#111;'> 8.57KB </span>","children":null,"spread":false},{"title":"get_sorted_adjnodes_norm.m <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 102B </span>","children":null,"spread":false},{"title":"tip_follow.m <span style='color:#111;'> 6.26KB </span>","children":null,"spread":false},{"title":"find_rantarget_point_norm.m <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"WaveEfficiencyVsPegDistAnistropy3.fig <span style='color:#111;'> 26.40KB </span>","children":null,"spread":false},{"title":"find_target_point.m <span style='color:#111;'> 717B </span>","children":null,"spread":false},{"title":"get_sorted_adjnodes.m <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"blackout.m <span style='color:#111;'> 10.28KB </span>","children":null,"spread":false},{"title":"Random_path_test.m <span style='color:#111;'> 9.28KB </span>","children":null,"spread":false},{"title":"Geometric Planner <span style='color:#111;'> 1B </span>","children":null,"spread":false}],"spread":false}],"spread":true}]