集成方法:装袋,RandomForest和AdaBoostClassifier-源码

上传者: 42127783 | 上传时间: 2021-11-06 15:58:24 | 文件大小: 365KB | 文件类型: -
在之前的实验中,我使用朴素贝叶斯(Naive Bayes)对此垃圾邮件进行分类。 在本笔记本中,我们将通过使用一些新技术(例如Bagging,RandomForest和AdaBoostClassifier)扩展先前的分析。 事实证明,我们的朴素贝叶斯模型实际上做得很好。 但是,让我们看一下其他一些模型,看看是否仍然无法改进。 特别是在本笔记本中,我们将研究以下技术: 可以找到有关合奏方法的另一个非常有用的指南。 这些合奏方法结合了多种技术: 引导通过学习者传递的数据(装袋)。 对用于学习者的功能进行子集化(与装袋组合表示随机森林的两个随机组成部分)。 将学习者聚集在一起,以使在某些方面表现最佳的学习者产生最大的影响(增强)。 通常,可以使用五步过程来使用监督学习方法(您在上面实际使用的方法): 导入模型。 使用感兴趣的超参数实例化模型。 使模型适合训练数据。 预测测

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明