上传者: 42127020
|
上传时间: 2022-03-18 15:03:17
|
文件大小: 2KB
|
文件类型: -
ASCT
自适应结构卷积网络的视觉目标跟踪
摘要:已经证明卷积神经网络(CNN)在视觉对象跟踪任务中实现了最新的性能。 但是,现有的基于CNN的跟踪器通常使用整体目标样本来训练其网络。 一旦目标经历复杂的情况(例如,遮挡,背景杂波和变形),跟踪性能就会严重下降。 在本文中,我们提出了一种自适应结构卷积滤波器模型,以增强深度回归跟踪器(名为:ASCT)的鲁棒性。 具体来说,我们首先设计一个遮罩集以生成局部滤镜以捕获目标的局部结构。 同时,针对这些局部滤波器,我们采用了自适应加权融合策略,以适应目标外观的变化,从而可以有效地提高跟踪器的鲁棒性。 此外,我们开发了一个端到端的可训练网络,该网络包括用于有效训练的特征提取,决策和模型更新模块。 在大型基准数据集上的大量实验结果表明,所提出的ASCT跟踪器的有效性优于最新的跟踪器。
:star: 更新:ASCT跟踪器的代码可以在下载 。
用法
追踪
1下