[{"title":"( 45 个子文件 31.15MB ) Applied-Data-Science-with-Python","children":[{"title":"Applied-Data-Science-with-Python-main","children":[{"title":"1. Introduction to Data Science in Python","children":[{"title":"Week 1","children":[{"title":"assets","children":[{"title":"logdata.txt <span style='color:#111;'> 99.28KB </span>","children":null,"spread":false},{"title":"grades.txt <span style='color:#111;'> 767B </span>","children":null,"spread":false}],"spread":true},{"title":"assignment1.ipynb <span style='color:#111;'> 8.29KB </span>","children":null,"spread":false}],"spread":true},{"title":"Week 3","children":[{"title":"assets","children":[{"title":"world_bank.csv <span style='color:#111;'> 198.34KB </span>","children":null,"spread":false},{"title":"Energy Indicators.xls <span style='color:#111;'> 64.50KB </span>","children":null,"spread":false},{"title":"scimagojr-3.xlsx <span style='color:#111;'> 13.76KB </span>","children":null,"spread":false}],"spread":true},{"title":"assignment3.ipynb <span style='color:#111;'> 38.38KB </span>","children":null,"spread":false}],"spread":true},{"title":"Week 4","children":[{"title":"assignment4.ipynb <span style='color:#111;'> 25.74KB </span>","children":null,"spread":false},{"title":"assets","children":[{"title":"wikipedia_data.html <span style='color:#111;'> 442.95KB </span>","children":null,"spread":false},{"title":"nfl.csv <span style='color:#111;'> 16.44KB </span>","children":null,"spread":false},{"title":"nba.csv <span style='color:#111;'> 11.64KB </span>","children":null,"spread":false},{"title":"nhl.csv <span style='color:#111;'> 15.80KB </span>","children":null,"spread":false},{"title":"mlb.csv <span style='color:#111;'> 6.72KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"Week 2","children":[{"title":"assignment2.ipynb <span style='color:#111;'> 12.76KB </span>","children":null,"spread":false},{"title":"assets","children":[{"title":"NIS-PUF17-DUG.pdf <span style='color:#111;'> 4.10MB </span>","children":null,"spread":false},{"title":"NISPUF17.csv <span style='color:#111;'> 38.65MB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true},{"title":"readme.md <span style='color:#111;'> 517B </span>","children":null,"spread":false},{"title":"2. Applied Plotting, Charting and Data Representation in Python","children":[{"title":"Week 2","children":[{"title":"Assignment2.ipynb <span style='color:#111;'> 142.54KB </span>","children":null,"spread":false},{"title":"download.png <span style='color:#111;'> 103.37KB </span>","children":null,"spread":false},{"title":"fb441e62df2d58994928907a91895ec62c2c42e6cd075c2700843b89.csv <span style='color:#111;'> 5.00MB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"4. Applied Text Mining in Python","children":[{"title":"Week 1","children":[{"title":"dates.txt <span style='color:#111;'> 66.35KB </span>","children":null,"spread":false},{"title":"Assignment+1.ipynb <span style='color:#111;'> 5.46KB </span>","children":null,"spread":false}],"spread":true},{"title":"Week 3","children":[{"title":"spam.csv <span style='color:#111;'> 468.03KB </span>","children":null,"spread":false},{"title":"Assignment+3.ipynb <span style='color:#111;'> 25.12KB </span>","children":null,"spread":false}],"spread":true},{"title":"Week 4","children":[{"title":"newsgroups <span style='color:#111;'> 1.61MB </span>","children":null,"spread":false},{"title":"Assignment+4.ipynb <span style='color:#111;'> 18.18KB </span>","children":null,"spread":false},{"title":"paraphrases.csv <span style='color:#111;'> 4.71KB </span>","children":null,"spread":false}],"spread":true},{"title":"Week 2","children":[{"title":"moby.txt <span style='color:#111;'> 1.16MB </span>","children":null,"spread":false},{"title":"Assignment+2.ipynb <span style='color:#111;'> 17.87KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"3. Applied Machine Learning in Python","children":[{"title":"Week 1","children":[{"title":"Assignment+1.ipynb <span style='color:#111;'> 29.38KB </span>","children":null,"spread":false}],"spread":true},{"title":"Week 3","children":[{"title":"fraud_data.csv <span style='color:#111;'> 11.15MB </span>","children":null,"spread":false},{"title":"Assignment+3.ipynb <span style='color:#111;'> 9.25KB </span>","children":null,"spread":false}],"spread":true},{"title":"Week 4","children":[{"title":"Assignment+4.ipynb <span style='color:#111;'> 13.01KB </span>","children":null,"spread":false},{"title":"readonly","children":[{"title":"train.csv <span style='color:#111;'> 92.88MB </span>","children":null,"spread":false},{"title":"latlons.csv <span style='color:#111;'> 5.87MB </span>","children":null,"spread":false},{"title":"test.csv <span style='color:#111;'> 18.96MB </span>","children":null,"spread":false},{"title":"addresses.csv <span style='color:#111;'> 10.52MB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"Week 2","children":[{"title":"readonly","children":[{"title":"polynomialreg1.png <span style='color:#111;'> 152.76KB </span>","children":null,"spread":false},{"title":"mushrooms.csv <span style='color:#111;'> 365.24KB </span>","children":null,"spread":false}],"spread":true},{"title":"Assignment+2.ipynb <span style='color:#111;'> 20.18KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"5. Applied Social Network Analysis in Python","children":[{"title":"Week 1","children":[{"title":"Employee_Movie_Choices.txt <span style='color:#111;'> 553B </span>","children":null,"spread":false},{"title":"Assignment+1.ipynb <span style='color:#111;'> 7.20KB </span>","children":null,"spread":false},{"title":"Employee_Relationships.txt <span style='color:#111;'> 417B </span>","children":null,"spread":false}],"spread":true},{"title":"Week 2","children":[{"title":"email_network.txt <span style='color:#111;'> 1.33MB </span>","children":null,"spread":false},{"title":"Assignment+2.ipynb <span style='color:#111;'> 11.10KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}],"spread":true}]