emotion-recognition:监督学习算法将面部分类为七种情绪之一(即愤怒、厌恶、恐惧、快乐、悲伤、惊讶、中性)

上传者: 42123237 | 上传时间: 2022-05-31 11:15:14 | 文件大小: 248.46MB | 文件类型: ZIP
情感识别 机器学习算法将人脸分为七类(即愤怒、厌恶、恐惧、快乐、悲伤、惊讶、中性)之一。

文件下载

资源详情

[{"title":"( 40 个子文件 248.46MB ) emotion-recognition:监督学习算法将面部分类为七种情绪之一(即愤怒、厌恶、恐惧、快乐、悲伤、惊讶、中性)","children":[{"title":"emotion-recognition-master","children":[{"title":"run_gabor_svm.m <span style='color:#111;'> 938B </span>","children":null,"spread":false},{"title":"ensemble","children":[{"title":"ensemble.m <span style='color:#111;'> 855B </span>","children":null,"spread":false}],"spread":true},{"title":"run_nb.m <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"gabor_features.mat <span style='color:#111;'> 78.51MB </span>","children":null,"spread":false},{"title":"labeled_images.mat <span style='color:#111;'> 2.55MB </span>","children":null,"spread":false},{"title":"neural_net","children":[{"title":"nn_cross_validate.m <span style='color:#111;'> 1.98KB </span>","children":null,"spread":false},{"title":"nn_classifier.m <span style='color:#111;'> 815B </span>","children":null,"spread":false}],"spread":true},{"title":"run_knn.m <span style='color:#111;'> 920B </span>","children":null,"spread":false},{"title":"run_svm.m <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"hidden_test_images.mat <span style='color:#111;'> 749.56KB </span>","children":null,"spread":false},{"title":"gabor","children":[{"title":"gabor_features.m <span style='color:#111;'> 430B </span>","children":null,"spread":false},{"title":"gaborFeatures.m <span style='color:#111;'> 3.33KB </span>","children":null,"spread":false},{"title":"gaborFilterBank.m <span style='color:#111;'> 2.48KB </span>","children":null,"spread":false}],"spread":true},{"title":"predictions","children":[{"title":"nn_prediction.csv <span style='color:#111;'> 7.50KB </span>","children":null,"spread":false},{"title":"svm_gabor_prediction.csv <span style='color:#111;'> 7.50KB </span>","children":null,"spread":false},{"title":"nn-prediction-72010.csv <span style='color:#111;'> 7.50KB </span>","children":null,"spread":false},{"title":"gabor_svm_prediction.csv <span style='color:#111;'> 7.50KB </span>","children":null,"spread":false},{"title":"svm_prediction-72010.csv <span style='color:#111;'> 7.50KB </span>","children":null,"spread":false},{"title":"svm_prediction.csv <span style='color:#111;'> 7.50KB </span>","children":null,"spread":false},{"title":"nn-prediction-69617.csv <span style='color:#111;'> 7.50KB </span>","children":null,"spread":false},{"title":"prediction.csv <span style='color:#111;'> 7.50KB </span>","children":null,"spread":false}],"spread":true},{"title":"trainedModel.mat <span style='color:#111;'> 79.12MB </span>","children":null,"spread":false},{"title":"knn","children":[{"title":"cross_validate.m <span style='color:#111;'> 1.97KB </span>","children":null,"spread":false},{"title":"baseline.m <span style='color:#111;'> 1.06KB </span>","children":null,"spread":false},{"title":"distMat.m <span style='color:#111;'> 267B </span>","children":null,"spread":false},{"title":"knn_classifier.m <span style='color:#111;'> 1.37KB </span>","children":null,"spread":false}],"spread":true},{"title":"public_test_images.mat <span style='color:#111;'> 376.22KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 179B </span>","children":null,"spread":false},{"title":"svm","children":[{"title":"svm_classifier.m <span style='color:#111;'> 421B </span>","children":null,"spread":false}],"spread":false},{"title":"run_nn.m <span style='color:#111;'> 1.74KB </span>","children":null,"spread":false},{"title":"misc","children":[{"title":"kNN_baseline","children":[{"title":"cross_validate.m <span style='color:#111;'> 1.85KB </span>","children":null,"spread":false},{"title":"baseline.m <span style='color:#111;'> 1.23KB </span>","children":null,"spread":false},{"title":"distMat.m <span style='color:#111;'> 267B </span>","children":null,"spread":false},{"title":"knn_classifier.m <span style='color:#111;'> 1.36KB </span>","children":null,"spread":false}],"spread":false},{"title":"nn.m <span style='color:#111;'> 1.38KB </span>","children":null,"spread":false},{"title":"init_nn.m <span style='color:#111;'> 1.96KB </span>","children":null,"spread":false},{"title":"kNN_baseline.zip <span style='color:#111;'> 4.71KB </span>","children":null,"spread":false},{"title":"train_nn.m <span style='color:#111;'> 3.90KB </span>","children":null,"spread":false}],"spread":false},{"title":"combiner.m <span style='color:#111;'> 2.85KB </span>","children":null,"spread":false},{"title":"unlabeled_images.mat <span style='color:#111;'> 87.14MB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明