FAS-SGTD:用于人脸反欺骗的深度空间梯度和时间深度学习

上传者: 42121905 | 上传时间: 2022-06-02 19:47:35 | 文件大小: 126KB | 文件类型: ZIP
财务会计准则委员会 介绍 主要代码 先决条件 Python 3.6(numpy,skimage,scipy) TensorFlow> = 1.4 的opencv2 枕头(PIL) 易言 火车 您可以使用生成虚拟深度图。 对于单帧舞台: cd fas_sgtd_single_frame && bash train.sh 对于多帧阶段: cd fas_sgtd_multi_frame && bash train.sh 测试 我们提供OULU-NPU协议1的示例。您可以从 (pwd:luik)或下载模型,然后将其放入fas_sgtd_multi_frame/model_save/ 。 cd fas_sgtd_multi_frame && bash test.sh 执照 代码:根据MIT许可。 它仅用于研究目的,不允许用于商业用途 引文 如果您使用此代码,请考虑引用: @inprocee

文件下载

资源详情

[{"title":"( 65 个子文件 126KB ) FAS-SGTD:用于人脸反欺骗的深度空间梯度和时间深度学习","children":[{"title":"FAS-SGTD-master","children":[{"title":"fas_sgtd_multi_frame","children":[{"title":"FLAGS.py <span style='color:#111;'> 2.00KB </span>","children":null,"spread":false},{"title":"test.sh <span style='color:#111;'> 41B </span>","children":null,"spread":false},{"title":"generate_network.py <span style='color:#111;'> 21.03KB </span>","children":null,"spread":false},{"title":"generate_data_train.py <span style='color:#111;'> 14.25KB </span>","children":null,"spread":false},{"title":"train.sh <span style='color:#111;'> 44B </span>","children":null,"spread":false},{"title":"generate_data_test.py <span style='color:#111;'> 10.61KB </span>","children":null,"spread":false},{"title":"util","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"util_test_OULU_Protocol_1.py <span style='color:#111;'> 1.71KB </span>","children":null,"spread":false},{"title":"BasicConvLSTMCell.py <span style='color:#111;'> 2.56KB </span>","children":null,"spread":false},{"title":"util_dataset.py <span style='color:#111;'> 12.85KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"performances.cpython-35.pyc <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false},{"title":"util_test_OULU_Protocol_1.cpython-35.pyc <span style='color:#111;'> 1.40KB </span>","children":null,"spread":false},{"title":"BasicConvLSTMCell.cpython-35.pyc <span style='color:#111;'> 5.07KB </span>","children":null,"spread":false},{"title":"util_PRNet_riskdata6_v2.cpython-36.pyc <span style='color:#111;'> 4.18KB </span>","children":null,"spread":false},{"title":"util_dataset.cpython-35.pyc <span style='color:#111;'> 9.66KB </span>","children":null,"spread":false},{"title":"BasicConvLSTMCell.cpython-36.pyc <span style='color:#111;'> 4.48KB </span>","children":null,"spread":false},{"title":"__init__.cpython-35.pyc <span style='color:#111;'> 179B </span>","children":null,"spread":false},{"title":"util_PRNet_riskdata6_v2.cpython-35.pyc <span style='color:#111;'> 4.80KB </span>","children":null,"spread":false},{"title":"util_PRNet_riskdata6.cpython-35.pyc <span style='color:#111;'> 4.39KB </span>","children":null,"spread":false},{"title":"util_dataset.cpython-36.pyc <span style='color:#111;'> 8.30KB </span>","children":null,"spread":false},{"title":"util_network.cpython-36.pyc <span style='color:#111;'> 6.09KB </span>","children":null,"spread":false},{"title":"performances.cpython-36.pyc <span style='color:#111;'> 1.38KB </span>","children":null,"spread":false},{"title":"util_test_OULU_Protocol_1.cpython-36.pyc <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false},{"title":"__init__.cpython-36.pyc <span style='color:#111;'> 149B </span>","children":null,"spread":false},{"title":"util_network.cpython-35.pyc <span style='color:#111;'> 3.77KB </span>","children":null,"spread":false}],"spread":false},{"title":"util_network.py <span style='color:#111;'> 7.34KB </span>","children":null,"spread":false},{"title":"performances.py <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false}],"spread":true},{"title":"__pycache__","children":[{"title":"FLAGS.cpython-36.pyc <span style='color:#111;'> 1.63KB </span>","children":null,"spread":false},{"title":"generate_data_test.cpython-36.pyc <span style='color:#111;'> 7.42KB </span>","children":null,"spread":false},{"title":"generate_network.cpython-36.pyc <span style='color:#111;'> 13.56KB </span>","children":null,"spread":false}],"spread":true},{"title":"test.py <span style='color:#111;'> 8.61KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false}],"spread":true},{"title":"fas_sgtd_single_frame","children":[{"title":"FLAGS.py <span style='color:#111;'> 1.85KB </span>","children":null,"spread":false},{"title":"test.sh <span style='color:#111;'> 41B </span>","children":null,"spread":false},{"title":"generate_network.py <span style='color:#111;'> 10.68KB </span>","children":null,"spread":false},{"title":"generate_data_train.py <span style='color:#111;'> 13.74KB </span>","children":null,"spread":false},{"title":"train.sh <span style='color:#111;'> 55B </span>","children":null,"spread":false},{"title":"generate_data_test.py <span style='color:#111;'> 10.79KB </span>","children":null,"spread":false},{"title":"test_visualize_map.sh <span style='color:#111;'> 55B </span>","children":null,"spread":false},{"title":"util","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"util_test_OULU_Protocol_1.py <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"util_dataset.py <span style='color:#111;'> 11.09KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"performances.cpython-35.pyc <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false},{"title":"util_test_OULU_Protocol_1.cpython-35.pyc <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false},{"title":"util_PRNet_riskdata6_v2.cpython-36.pyc <span style='color:#111;'> 4.19KB </span>","children":null,"spread":false},{"title":"util_dataset.cpython-35.pyc <span style='color:#111;'> 8.37KB </span>","children":null,"spread":false},{"title":"__init__.cpython-35.pyc <span style='color:#111;'> 143B </span>","children":null,"spread":false},{"title":"util_PRNet_riskdata6_v2.cpython-35.pyc <span style='color:#111;'> 4.78KB </span>","children":null,"spread":false},{"title":"util_PRNet_riskdata6.cpython-35.pyc <span style='color:#111;'> 4.39KB </span>","children":null,"spread":false},{"title":"util_dataset.cpython-36.pyc <span style='color:#111;'> 7.20KB </span>","children":null,"spread":false},{"title":"util_network.cpython-36.pyc <span style='color:#111;'> 4.24KB </span>","children":null,"spread":false},{"title":"performances.cpython-36.pyc <span style='color:#111;'> 1.38KB </span>","children":null,"spread":false},{"title":"util_test_OULU_Protocol_1.cpython-36.pyc <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"__init__.cpython-36.pyc <span style='color:#111;'> 158B </span>","children":null,"spread":false},{"title":"util_network.cpython-35.pyc <span style='color:#111;'> 5.02KB </span>","children":null,"spread":false}],"spread":false},{"title":"util_network.py <span style='color:#111;'> 7.31KB </span>","children":null,"spread":false},{"title":"performances.py <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false}],"spread":true},{"title":"__pycache__","children":[{"title":"FLAGS.cpython-35.pyc <span style='color:#111;'> 1.73KB </span>","children":null,"spread":false},{"title":"generate_network.cpython-35.pyc <span style='color:#111;'> 7.86KB </span>","children":null,"spread":false},{"title":"generate_data_test.cpython-35.pyc <span style='color:#111;'> 8.28KB </span>","children":null,"spread":false}],"spread":true},{"title":"test.py <span style='color:#111;'> 8.47KB </span>","children":null,"spread":false},{"title":"test_visualize_map.py <span style='color:#111;'> 7.95KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 1.38KB </span>","children":null,"spread":false}],"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.27KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明