Deep-Learning-Beginner:在野外捕获的野生动物图像在对动物进行分类时代表了一项艰巨的任务,因为它们以不同的姿势,杂乱的背景,不同的光照和气候条件,不同的视点和遮挡物出现。 此外,不同类别的动物看起来相似。 所有这些挑战需要一种有效的分类算法。 在这项挑战中,您将获得30种不同动物物种的19,000张图像。 给定动物的图像,您的任务是预测每种动物类别的可能性。 具有最高概率的动物类别意味着该图像属于该动物类别

上传者: 42121905 | 上传时间: 2022-03-14 12:10:41 | 文件大小: 2.28MB | 文件类型: -
深度学习入门挑战 几年来,野生生物中的动物检测一直是生物学家非常感兴趣的领域。 他们经常研究动物的行为以预测其行为。 由于存在大量不同的动物,因此手动识别它们可能是一项艰巨的任务。 因此,可以根据动物的图像对动物进行分类的算法可以帮助研究人员更有效地监视动物。 此外,动物检测和分类还可以帮助防止动物车辆事故,追踪动物设施,防止盗窃并确保动物园中动物的安全。 深度学习的应用在计算机视觉领域正在Swift增长,并正在帮助构建强大的分类和识别模型。 我们可以利用深度学习的这种力量来构建可以对不同种类的动物进行分类和区分的模型。 在此数据集中,我们提供了30种不同动物的19,000张图像。 在接下来的90天内,我们将向您挑战以建立模型,以便在给定图像的情况下,该模型将预测每种动物类别的概率。 具有最高概率的动物类别将表示该图像属于该动物类别。 这是一个入门文件,可供初学者通过此挑战进入深度学

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明