soil_moisture_project

上传者: 42121725 | 上传时间: 2026-01-21 11:29:13 | 文件大小: 40.97MB | 文件类型: ZIP
标题 "soil_moisture_project" 提示我们这是一个与土壤湿度相关的项目,可能涉及环境科学或农业技术领域,其中利用了机器学习模型进行预测。在这个项目中,开发者使用了长短期记忆网络(LSTM)来处理时间序列数据,以预测土壤湿度的变化。 描述中的 "src/train_LSTM_3" 指出源代码目录下有一个名为 "train_LSTM_3" 的文件或子目录,这通常包含了训练LSTM模型的代码。LSTM是一种特殊的循环神经网络(RNN),特别适合处理具有时间依赖性的序列数据,如时间序列预测。在这个项目中,LSTM模型被用来分析和理解土壤湿度随时间和空间变化的模式。 Python是这个项目的主要编程语言,这意味着所有代码都将用Python编写,这包括数据预处理、构建LSTM模型、训练模型以及可能的模型评估和结果可视化等步骤。Python在数据科学和机器学习领域非常流行,因为它有丰富的库和工具,如NumPy用于数值计算,Pandas用于数据处理,Matplotlib和Seaborn用于数据可视化,以及TensorFlow和Keras用于深度学习。 在实际应用中,预测土壤湿度对于农业灌溉管理、灾害预警(如洪水或干旱)以及环境研究都具有重要意义。LSTM模型可以捕获历史数据中的长期依赖关系,从而更好地预测未来的土壤湿度状况。数据可能包括但不限于:过去的土壤湿度测量值、气象数据(如温度、降雨量、风速)、土壤类型、地形信息等。 在 "soil_moisture_project-master" 压缩包中,我们可以期待找到以下文件和目录结构: 1. `src`:包含项目的源代码,可能有多个Python脚本,如数据预处理脚本、模型定义脚本、训练脚本等。 2. `data`:可能包含原始数据集,分为训练集和测试集,数据可能为CSV或其他格式,列可能包括时间戳、不同位置的土壤湿度读数等。 3. `models`:训练好的LSTM模型可能保存在这里,可能是.h5或其他格式的模型文件。 4. `results`:可能包含模型预测的结果和评估报告,以及可能的数据可视化图像。 5. `README.md`:项目简介和使用说明,可能包含如何运行代码和解释结果的详细信息。 6. `requirements.txt`:列出项目所需的Python库和它们的版本,便于其他人复现项目环境。 为了实现这个项目,开发者可能首先对数据进行清洗和预处理,然后构建LSTM模型,设置合适的超参数,如隐藏层的大小、学习率、批量大小等。接着,他们会将数据划分为训练集和验证集,用训练集训练模型,并在验证集上调整模型性能。模型会在测试集上进行评估,预测结果可能会与实际的土壤湿度值进行比较,以评估模型的准确性和泛化能力。

文件下载

资源详情

[{"title":"( 68 个子文件 40.97MB ) soil_moisture_project","children":[{"title":"soil_moisture_project-master","children":[{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"src","children":[{"title":"evaluate_model_performance.py <span style='color:#111;'> 5.38KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"Untitled-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false}],"spread":true},{"title":"LSTM_3.py <span style='color:#111;'> 3.68KB </span>","children":null,"spread":false},{"title":"without_y.png <span style='color:#111;'> 35.59KB </span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'> 10.00KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 10.07KB </span>","children":null,"spread":false},{"title":"LSTM_3_free_run.png <span style='color:#111;'> 34.94KB </span>","children":null,"spread":false},{"title":"load_data_2.py <span style='color:#111;'> 3.83KB </span>","children":null,"spread":false},{"title":"test.py <span style='color:#111;'> 4.24KB </span>","children":null,"spread":false},{"title":"Hybrid_free_run.pt <span style='color:#111;'> 101.46KB </span>","children":null,"spread":false},{"title":"model.pt <span style='color:#111;'> 689.94KB </span>","children":null,"spread":false},{"title":"model_entire.pt <span style='color:#111;'> 691.19KB </span>","children":null,"spread":false},{"title":"LSTM_3_free_run.pt <span style='color:#111;'> 684.31KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 5.12KB </span>","children":null,"spread":false},{"title":"LSTM_1.py <span style='color:#111;'> 2.45KB </span>","children":null,"spread":false},{"title":"LSTM_2.py <span style='color:#111;'> 3.07KB </span>","children":null,"spread":false},{"title":"Untitled.ipynb <span style='color:#111;'> 28.77KB </span>","children":null,"spread":false},{"title":"FFN.py <span style='color:#111;'> 584B </span>","children":null,"spread":false},{"title":"without_y.pt <span style='color:#111;'> 99.89KB </span>","children":null,"spread":false},{"title":"train_LSTM_4.py <span style='color:#111;'> 7.43KB </span>","children":null,"spread":false},{"title":"model.png <span style='color:#111;'> 33.41KB </span>","children":null,"spread":false},{"title":"Hybrid_free_run.png <span style='color:#111;'> 35.16KB </span>","children":null,"spread":false},{"title":"LSTM_4.py <span style='color:#111;'> 2.25KB </span>","children":null,"spread":false},{"title":"Hybrid_with_teacher.pt <span style='color:#111;'> 63.90KB </span>","children":null,"spread":false},{"title":"test_LSTM_1.py <span style='color:#111;'> 3.84KB </span>","children":null,"spread":false},{"title":"train_LSTM_3.py <span style='color:#111;'> 7.78KB </span>","children":null,"spread":false},{"title":"LSTM_3_with_teacher.png <span style='color:#111;'> 27.58KB </span>","children":null,"spread":false},{"title":"LSTM_4_with_teacher.pt <span style='color:#111;'> 680.11KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"load_data.cpython-37.pyc <span style='color:#111;'> 2.82KB </span>","children":null,"spread":false},{"title":"LSTM_2.cpython-37.pyc <span style='color:#111;'> 1.80KB </span>","children":null,"spread":false},{"title":"LSTM_3.cpython-37.pyc <span style='color:#111;'> 1.92KB </span>","children":null,"spread":false},{"title":"model.cpython-37.pyc <span style='color:#111;'> 2.16KB </span>","children":null,"spread":false},{"title":"load_data_3.cpython-37.pyc <span style='color:#111;'> 2.76KB </span>","children":null,"spread":false},{"title":"LSTM_4.cpython-37.pyc <span style='color:#111;'> 1.61KB </span>","children":null,"spread":false},{"title":"utility.cpython-37.pyc <span style='color:#111;'> 960B </span>","children":null,"spread":false},{"title":"LSTM_1.cpython-37.pyc <span style='color:#111;'> 1.59KB </span>","children":null,"spread":false},{"title":"load_data_2.cpython-37.pyc <span style='color:#111;'> 2.95KB </span>","children":null,"spread":false},{"title":"load_data_4.cpython-37.pyc <span style='color:#111;'> 1.66KB </span>","children":null,"spread":false},{"title":"FFN.cpython-37.pyc <span style='color:#111;'> 902B </span>","children":null,"spread":false}],"spread":false},{"title":"utility.py <span style='color:#111;'> 809B </span>","children":null,"spread":false},{"title":"train_FFN.py <span style='color:#111;'> 6.36KB </span>","children":null,"spread":false},{"title":"insitu_validation.py <span style='color:#111;'> 2.22KB </span>","children":null,"spread":false},{"title":"split_data.py <span style='color:#111;'> 1.58KB </span>","children":null,"spread":false},{"title":"test_LSTM_2.py <span style='color:#111;'> 4.25KB </span>","children":null,"spread":false},{"title":"train_LSTM_1.py <span style='color:#111;'> 5.86KB </span>","children":null,"spread":false},{"title":"LSTM_3_with_teacher.pt <span style='color:#111;'> 684.31KB </span>","children":null,"spread":false},{"title":"LSTM_4_bidirectional.png <span style='color:#111;'> 26.24KB </span>","children":null,"spread":false},{"title":"LSTM_4_bidirectional.pt <span style='color:#111;'> 680.31KB </span>","children":null,"spread":false},{"title":"load_data_3.py <span style='color:#111;'> 3.38KB </span>","children":null,"spread":false},{"title":"Hybrid_with_teacher.png <span style='color:#111;'> 36.52KB </span>","children":null,"spread":false},{"title":"load_data_4.py <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"train_LSTM_2.py <span style='color:#111;'> 9.90KB </span>","children":null,"spread":false},{"title":"LSTM_4_with_teacher.png <span style='color:#111;'> 28.86KB </span>","children":null,"spread":false},{"title":"load_data.py <span style='color:#111;'> 3.64KB </span>","children":null,"spread":false}],"spread":false},{"title":"model","children":[{"title":"LSTM_3_free_run.pt <span style='color:#111;'> 684.31KB </span>","children":null,"spread":false},{"title":"LSTM_4_with_teacher.pt <span style='color:#111;'> 680.11KB </span>","children":null,"spread":false},{"title":"LSTM_3_with_teacher.pt <span style='color:#111;'> 684.31KB </span>","children":null,"spread":false},{"title":"readme.md <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"LSTM_4_bidirectional.pt <span style='color:#111;'> 680.31KB </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"SMAP_Climate_In_Situ_Kenaston_training_data.csv.zip <span style='color:#111;'> 15.78MB </span>","children":null,"spread":false},{"title":"SMAP_Climate_In_Situ_Kenaston_testing_data.csv.zip <span style='color:#111;'> 6.23MB </span>","children":null,"spread":false},{"title":"SMAP_Climate_In_Situ.csv.zip <span style='color:#111;'> 12.26MB </span>","children":null,"spread":false}],"spread":true},{"title":"conda","children":[{"title":"submit.sub <span style='color:#111;'> 755B </span>","children":null,"spread":false},{"title":"environment.yml <span style='color:#111;'> 180B </span>","children":null,"spread":false},{"title":"submit.sh <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false}],"spread":true},{"title":"readme.md <span style='color:#111;'> 84B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明