YOLOv4-object:我们修改NMS procecss-源码

上传者: 42121412 | 上传时间: 2022-01-10 14:53:45 | 文件大小: 15.76MB | 文件类型: -
C
YOLOv4-object:对象发现的有效模型和方法 此仓库基于 。 抽象 对象发现是指识别图像中的所有未知对象,这对于机器人系统探索未知环境非常重要。 近年来,基于深度学习方法的物体检测模型在物体分类和定位方面取得了令人瞩目的成就。 但是,这些模型很难处理看不见的环境,因为要详尽地预定义所有类型的对象是不可行的。 在本文中,我们提出了模型YOLOv4-object来通过修改YOLOv4的输出空间和相关的图像标签来识别图像中的所有对象。 在COCO数据集上进行的实验通过实现65.13%的查全率(比原始YOLOv4高3.65%)证明了我们方法的有效性。 我们指出,COCO的功能(不标记所有对象)会损害对象发现的学习过程,因此,我们在480个完全标记的图像上微调YOLOv4-object,并显着改善了召回率,从而进一步验证了我们提出的方法的有效性。 而且,我们的方法是可转移的,可扩展的和可压

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明