brainTumor:实现了垂体瘤,胶质瘤和脑膜瘤的图像分类,先进行CTMR图像的分类,采用HOG + SVM算法实现,再进行图像识别,采用CNN或多特征+ SVM实现,系统界面pyQT构建

上传者: 42120997 | 上传时间: 2022-10-19 21:32:39 | 文件大小: 55.24MB | 文件类型: ZIP
brainTumor:实现了垂体瘤,胶质瘤和脑膜瘤的图像分类,先进行CTMR图像的分类,采用HOG + SVM算法实现,再进行图像识别,采用CNN或多特征+ SVM实现,系统界面pyQT构建

文件下载

资源详情

[{"title":"( 35 个子文件 55.24MB ) brainTumor:实现了垂体瘤,胶质瘤和脑膜瘤的图像分类,先进行CTMR图像的分类,采用HOG + SVM算法实现,再进行图像识别,采用CNN或多特征+ SVM实现,系统界面pyQT构建","children":[{"title":"brainTumor-master","children":[{"title":".ipynb_checkpoints","children":[{"title":"GP_MAT_Display-checkpoint.ipynb <span style='color:#111;'> 57.46KB </span>","children":null,"spread":false},{"title":"NO_GP_CNN_Classification-checkpoint.ipynb <span style='color:#111;'> 19.84KB </span>","children":null,"spread":false},{"title":"GP_GET_MODEL-checkpoint.ipynb <span style='color:#111;'> 29.40KB </span>","children":null,"spread":false},{"title":"GP_VGG16_code-checkpoint.ipynb <span style='color:#111;'> 765.05KB </span>","children":null,"spread":false},{"title":"GP_WEB_InterFace-checkpoint.ipynb <span style='color:#111;'> 325.29KB </span>","children":null,"spread":false},{"title":"GP_Train_Enhance_Image_rename-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"NO_GP_CNN_VGG-checkpoint.ipynb <span style='color:#111;'> 54.33KB </span>","children":null,"spread":false},{"title":"GP_PreProcessing-checkpoint.ipynb <span style='color:#111;'> 19.38KB </span>","children":null,"spread":false},{"title":"GP_Read_FILENAME-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"NO_GP_VGG16-checkpoint.ipynb <span style='color:#111;'> 38.79KB </span>","children":null,"spread":false},{"title":"GP_FeatureS_Draw_AND_PCA-checkpoint.ipynb <span style='color:#111;'> 24.95KB </span>","children":null,"spread":false},{"title":"CHECK_Package-checkpoint.ipynb <span style='color:#111;'> 3.96KB </span>","children":null,"spread":false},{"title":"NO_GP_Classify-checkpoint.ipynb <span style='color:#111;'> 35.94KB </span>","children":null,"spread":false},{"title":"GP_Data_Enhancement-checkpoint.ipynb <span style='color:#111;'> 4.45MB </span>","children":null,"spread":false},{"title":"GP_SVM_CLASSIFY-checkpoint.ipynb <span style='color:#111;'> 2.38MB </span>","children":null,"spread":false},{"title":"NOA_GP_KNN-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"GP_ReName-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false}],"spread":false},{"title":"GP_MAT_Display.ipynb <span style='color:#111;'> 57.46KB </span>","children":null,"spread":false},{"title":"GP_Data_Enhancement.ipynb <span style='color:#111;'> 64.22MB </span>","children":null,"spread":false},{"title":"NO_GP_CNN_VGG.ipynb <span style='color:#111;'> 36.89KB </span>","children":null,"spread":false},{"title":"GP_Read_FILENAME.ipynb <span style='color:#111;'> 46.79KB </span>","children":null,"spread":false},{"title":"GP_Train_Enhance_Image_rename.ipynb <span style='color:#111;'> 24.20KB </span>","children":null,"spread":false},{"title":"GP_VGG16_code.ipynb <span style='color:#111;'> 765.05KB </span>","children":null,"spread":false},{"title":"CHECK_Package.ipynb <span style='color:#111;'> 3.96KB </span>","children":null,"spread":false},{"title":"NO_GP_Classify.ipynb <span style='color:#111;'> 35.94KB </span>","children":null,"spread":false},{"title":"GP_PreProcessing.ipynb <span style='color:#111;'> 8.08KB </span>","children":null,"spread":false},{"title":"NO_GP_VGG16.ipynb <span style='color:#111;'> 38.79KB </span>","children":null,"spread":false},{"title":"GP_FeatureS_Draw_AND_PCA.ipynb <span style='color:#111;'> 24.95KB </span>","children":null,"spread":false},{"title":"GP_ReName.ipynb <span style='color:#111;'> 1.61KB </span>","children":null,"spread":false},{"title":"GP_WEB_InterFace.ipynb <span style='color:#111;'> 115.73KB </span>","children":null,"spread":false},{"title":"GP_SVM_CLASSIFY.ipynb <span style='color:#111;'> 2.38MB </span>","children":null,"spread":false},{"title":"GP_GET_MODEL.ipynb <span style='color:#111;'> 29.40KB </span>","children":null,"spread":false},{"title":"README <span style='color:#111;'> 495B </span>","children":null,"spread":false},{"title":"NO_GP_CNN_Classification.ipynb <span style='color:#111;'> 19.84KB </span>","children":null,"spread":false},{"title":"NOA_GP_KNN.ipynb <span style='color:#111;'> 506.37KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明