nntimeseries

上传者: 42120550 | 上传时间: 2022-11-07 15:54:53 | 文件大小: 22.48MB | 文件类型: ZIP
nntimeseries 该存储库提供了论文的代码,以及在keras模型上运行网格serach的通用代码。 文件'nnts / models / {CNN,LSTM,LSTM2,LR,SOCNN} .py'提供了用于测试各个模型的代码,最后一个实现了建议的重要性偏移CNN,而LSTM2实现了多层LSTM。 基本用法 每个模型文件都可以作为脚本运行,例如 python ./CNN.py --dataset=artificial #默认保存文件 python ./SOCNN.py --dataset=household --save_file=results/household_0.pkl 可以在上述每个文件中指定用于网格搜索的参数。 每个文件都定义了一个模型类,可以将其导入并在外部数据集上使用,如example.ipynb文件所示。 该存储库支持在人工多元嘈杂AR时间序列和家庭用

文件下载

资源详情

[{"title":"( 27 个子文件 22.48MB ) nntimeseries","children":[{"title":"nntimeseries-master","children":[{"title":"example.ipynb <span style='color:#111;'> 126.38KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.59KB </span>","children":null,"spread":false},{"title":"generate_artificial.py <span style='color:#111;'> 263B </span>","children":null,"spread":false},{"title":"results_display.ipynb <span style='color:#111;'> 173.83KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"artificialET1SS0n10000S64.csv <span style='color:#111;'> 42.93MB </span>","children":null,"spread":false},{"title":"artificialET1SS1n10000S64.csv <span style='color:#111;'> 10.41MB </span>","children":null,"spread":false},{"title":"artificialET1SS0n10000S16.csv <span style='color:#111;'> 11.68MB </span>","children":null,"spread":false},{"title":"artificialET1SS1n10000S16.csv <span style='color:#111;'> 3.95MB </span>","children":null,"spread":false}],"spread":true},{"title":"nnts","children":[{"title":"household.py <span style='color:#111;'> 7.86KB </span>","children":null,"spread":false},{"title":"config.py <span style='color:#111;'> 346B </span>","children":null,"spread":false},{"title":"models","children":[{"title":"LSTM2.py <span style='color:#111;'> 4.97KB </span>","children":null,"spread":false},{"title":"CNN_book.py <span style='color:#111;'> 5.37KB </span>","children":null,"spread":false},{"title":"CNN.py <span style='color:#111;'> 5.17KB </span>","children":null,"spread":false},{"title":"LSTM.py <span style='color:#111;'> 4.45KB </span>","children":null,"spread":false},{"title":"SOCNN.py <span style='color:#111;'> 8.71KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 131B </span>","children":null,"spread":false},{"title":"LR.py <span style='color:#111;'> 3.05KB </span>","children":null,"spread":false},{"title":"_imports_.py <span style='color:#111;'> 339B </span>","children":null,"spread":false}],"spread":true},{"title":"artificial.py <span style='color:#111;'> 9.96KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 31.51KB </span>","children":null,"spread":false},{"title":"book.py <span style='color:#111;'> 4.27KB </span>","children":null,"spread":false},{"title":"user.py <span style='color:#111;'> 2.24KB </span>","children":null,"spread":false},{"title":"keras_utils.py <span style='color:#111;'> 17.54KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 381B </span>","children":null,"spread":false},{"title":"lobster.py <span style='color:#111;'> 10.85KB </span>","children":null,"spread":false},{"title":"_imports_.py <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false}],"spread":false},{"title":"results_display.py <span style='color:#111;'> 5.03KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明