Yet-Another-EfficientDet-Pytorch-Convert-ONNX-TVM-源码

上传者: 42120541 | 上传时间: 2021-07-04 14:33:21 | 文件大小: 8.8MB | 文件类型: ZIP
更新(20200429) 此存储库基于库。 将这个高效的付款网络转换为ONNX的需求很多,因此我们进行此回购以帮助人们将模型转换为ONNX或TVM。 请注意,此存储库仅提供如何将模型转换为ONNX或TVM的功能,而不关注模型训练或其他事项。 如果您想训练或测试这种有效模型,最好的方法是参考原始的回购。 我们已根据此更改了一些代码,以帮助成功进行转换。 转换onnx 如果要转换为ONNX,只需运行 python3 convert/convert_onnx.py 转换电视 我们已经在提交** f08d5d78ee000b2c113ac451f8d73817960eafd5 **的tvm版本上进行了测试,其他版本未经测试,因此无法确保也能正常工作。 首先,您需要安装tvm,请参阅其。 我们称您的tvm安装源目录为tvm_home 。 然后,在tvm_home/python/tvm/rela

文件下载

资源详情

[{"title":"( 38 个子文件 8.8MB ) Yet-Another-EfficientDet-Pytorch-Convert-ONNX-TVM-源码","children":[{"title":"Yet-Another-EfficientDet-Pytorch-Convert-ONNX-TVM-master","children":[{"title":"efficientdet","children":[{"title":"config.py <span style='color:#111;'> 2.62KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 4.96KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 16.96KB </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 6.57KB </span>","children":null,"spread":false},{"title":"dataset.py <span style='color:#111;'> 5.54KB </span>","children":null,"spread":false}],"spread":true},{"title":"train.py <span style='color:#111;'> 15.10KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"sync_batchnorm","children":[{"title":"batchnorm_reimpl.py <span style='color:#111;'> 2.33KB </span>","children":null,"spread":false},{"title":"comm.py <span style='color:#111;'> 4.34KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 507B </span>","children":null,"spread":false},{"title":"replicate.py <span style='color:#111;'> 3.15KB </span>","children":null,"spread":false},{"title":"unittest.py <span style='color:#111;'> 746B </span>","children":null,"spread":false},{"title":"batchnorm.py <span style='color:#111;'> 15.49KB </span>","children":null,"spread":false}],"spread":true},{"title":"utils.py <span style='color:#111;'> 7.25KB </span>","children":null,"spread":false}],"spread":true},{"title":"backbone.py <span style='color:#111;'> 3.44KB </span>","children":null,"spread":false},{"title":"efficientnet","children":[{"title":"utils.py <span style='color:#111;'> 12.54KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 9.62KB </span>","children":null,"spread":false},{"title":"utils_extra.py <span style='color:#111;'> 2.95KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 169B </span>","children":null,"spread":false},{"title":"model2.py <span style='color:#111;'> 10.07KB </span>","children":null,"spread":false}],"spread":true},{"title":"efficientdet_test.py <span style='color:#111;'> 4.59KB </span>","children":null,"spread":false},{"title":"res","children":[{"title":"alipay.jpg <span style='color:#111;'> 173.30KB </span>","children":null,"spread":false}],"spread":true},{"title":"benchmark","children":[{"title":"coco_eval_result <span style='color:#111;'> 7.63KB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 7.47KB </span>","children":null,"spread":false},{"title":"test","children":[{"title":"img.png <span style='color:#111;'> 3.89MB </span>","children":null,"spread":false},{"title":"efficientdet_test.jpg <span style='color:#111;'> 831.18KB </span>","children":null,"spread":false},{"title":"img_inferred_d0_official.jpg <span style='color:#111;'> 405.50KB </span>","children":null,"spread":false},{"title":"from_tvm.jpg <span style='color:#111;'> 831.18KB </span>","children":null,"spread":false},{"title":"img_inferred_d0_this_repo.jpg <span style='color:#111;'> 959.00KB </span>","children":null,"spread":false},{"title":"from_pytorch.jpg <span style='color:#111;'> 831.18KB </span>","children":null,"spread":false},{"title":"img_inferred_d0_this_repo_0.jpg <span style='color:#111;'> 959.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"coco_eval.py <span style='color:#111;'> 5.25KB </span>","children":null,"spread":false},{"title":"tutorial","children":[{"title":"train_shape.ipynb <span style='color:#111;'> 19.85KB </span>","children":null,"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'> 1.77KB </span>","children":null,"spread":false},{"title":"readme.md <span style='color:#111;'> 17.53KB </span>","children":null,"spread":false},{"title":"convert","children":[{"title":"convert_onnx.py <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"from_pytorch.py <span style='color:#111;'> 8.13KB </span>","children":null,"spread":false}],"spread":false},{"title":"projects","children":[{"title":"shape.yml <span style='color:#111;'> 494B </span>","children":null,"spread":false},{"title":"coco.yml <span style='color:#111;'> 1.58KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明