ISIC2018:ISIC 2018

上传者: 42119358 | 上传时间: 2022-07-27 10:01:53 | 文件大小: 1.17MB | 文件类型: ZIP
ISIC 2018:黑色素瘤检测的皮肤病变分析 概括 更新:2018年7月15日,包括k倍验证以及验证/测试预测和提交。 该存储库为基于Keras / Tensorflow的ISIC-2018挑战的任务1和任务3提供了一个起始解决方案。 当前达到的性能是: 任务1 任务3 平均Jaccard的81.5% 准确度达83% 阈值Jaccard的77.2% 平均召回率68.5% 我们支持Keras支持的大多数骨干网(Inception,Densenet,VGG等)。 对于分段问题,我们还支持在U-Net类型结构中使用Keras预训练主干。 该代码是高度可配置的,允许您更改和尝试算法的许多方面。 下面,我们描述如何运行基准解决方案。 安装/设置 该代码使用:Python 3.5,Keras 2.1.6和TensorFlow 1.8.0。 请参阅需求文件以获取所需的软件包。 请

文件下载

资源详情

[{"title":"( 38 个子文件 1.17MB ) ISIC2018:ISIC 2018","children":[{"title":"ISIC2018-master","children":[{"title":".gitignore <span style='color:#111;'> 1.30KB </span>","children":null,"spread":false},{"title":"losses.py <span style='color:#111;'> 1.90KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 6.80KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 6.44KB </span>","children":null,"spread":false},{"title":"datasets","children":[{"title":"ISIC2018","children":[{"title":"preprocess_data.py <span style='color:#111;'> 627B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 17.45KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"paths.py <span style='color:#111;'> 525B </span>","children":null,"spread":false},{"title":"runs","children":[{"title":"seg_predict.py <span style='color:#111;'> 2.81KB </span>","children":null,"spread":false},{"title":"cls_train.py <span style='color:#111;'> 5.53KB </span>","children":null,"spread":false},{"title":"cls_eval.py <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"seg_eval.py <span style='color:#111;'> 2.59KB </span>","children":null,"spread":false},{"title":"seg_train.py <span style='color:#111;'> 9.93KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"cls_predict.py <span style='color:#111;'> 2.37KB </span>","children":null,"spread":false}],"spread":true},{"title":"models","children":[{"title":"inception.py <span style='color:#111;'> 3.95KB </span>","children":null,"spread":false},{"title":"ops.py <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false},{"title":"submodels","children":[{"title":"segmentation.py <span style='color:#111;'> 9.92KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"classification.py <span style='color:#111;'> 3.13KB </span>","children":null,"spread":false}],"spread":true},{"title":"resnet.py <span style='color:#111;'> 2.14KB </span>","children":null,"spread":false},{"title":"densenet.py <span style='color:#111;'> 5.29KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 13.69KB </span>","children":null,"spread":false},{"title":"blocks.py <span style='color:#111;'> 1.63KB </span>","children":null,"spread":false},{"title":"layers.py <span style='color:#111;'> 2.55KB </span>","children":null,"spread":false},{"title":"vgg.py <span style='color:#111;'> 11.65KB </span>","children":null,"spread":false}],"spread":true},{"title":"initializers.py <span style='color:#111;'> 650B </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"images","children":[{"title":"task1_results.png <span style='color:#111;'> 229.68KB </span>","children":null,"spread":false},{"title":"task3_results.png <span style='color:#111;'> 604.73KB </span>","children":null,"spread":false},{"title":"task1_input.png <span style='color:#111;'> 171.54KB </span>","children":null,"spread":false},{"title":"task2_input.png <span style='color:#111;'> 151.85KB </span>","children":null,"spread":false}],"spread":true},{"title":"misc_utils","children":[{"title":"eval_utils.py <span style='color:#111;'> 3.25KB </span>","children":null,"spread":false},{"title":"print_utils.py <span style='color:#111;'> 4.00KB </span>","children":null,"spread":false},{"title":"filename_utils.py <span style='color:#111;'> 1.37KB </span>","children":null,"spread":false},{"title":"visualization_utils.py <span style='color:#111;'> 8.57KB </span>","children":null,"spread":false},{"title":"model_utils.py <span style='color:#111;'> 3.01KB </span>","children":null,"spread":false},{"title":"prediction_utils.py <span style='color:#111;'> 2.21KB </span>","children":null,"spread":false}],"spread":true},{"title":"callback.py <span style='color:#111;'> 6.13KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明