Iris-Inference-Web-Service:该项目包含用于通过fastAPI接口为在Iris数据集上训练的XGBoost多类分类器提供服务的代码

上传者: 42119281 | 上传时间: 2022-08-30 15:29:54 | 文件大小: 48KB | 文件类型: ZIP
虹膜推理网络服务 该项目包含用于为在Iris数据集上训练的XGBoost多类别分类器提供服务的代码,并通过启用了docker的fastAPI接口提供服务,此外还包括pytest单元测试以及通过蝗虫对已部署服务的负载测试。 通过在项目根文件夹中运行以下命令,可以使用pipreqs提取需求: pipreqs --encoding=utf8 ./ 运行网络服务器 cd src uvicorn main:app --port 8006 (--reload) 或使用docker-compose: docker-compose up 使用.env文件中的指定主机和容器端口。 之后,您可以浏览生成的文档,通过上的Swagger UI尝试API的功能和行为,默认情况下为 运行测试套件 从根项目文件夹: pytest 使用蝗虫进行负载测试 运行蝗虫服务 cd load_test locust --

文件下载

资源详情

[{"title":"( 24 个子文件 48KB ) Iris-Inference-Web-Service:该项目包含用于通过fastAPI接口为在Iris数据集上训练的XGBoost多类分类器提供服务的代码","children":[{"title":"Iris-Inference-Web-Service-main","children":[{"title":"scaler","children":[{"title":"std_scaler.bin <span style='color:#111;'> 555B </span>","children":null,"spread":false}],"spread":true},{"title":"jupyter","children":[{"title":"Model Train.ipynb <span style='color:#111;'> 24.84KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"Model Train-checkpoint.ipynb <span style='color:#111;'> 24.61KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"data","children":[{"title":"Iris.csv <span style='color:#111;'> 4.99KB </span>","children":null,"spread":false}],"spread":true},{"title":"model","children":[{"title":"xgb.model <span style='color:#111;'> 28.21KB </span>","children":null,"spread":false}],"spread":true},{"title":"Dockerfile <span style='color:#111;'> 278B </span>","children":null,"spread":false},{"title":"tests","children":[{"title":"__pycache__","children":[{"title":"__init__.cpython-38.pyc <span style='color:#111;'> 175B </span>","children":null,"spread":false},{"title":"__init__.cpython-37.pyc <span style='color:#111;'> 171B </span>","children":null,"spread":false},{"title":"test_main.cpython-37-pytest-6.2.2.pyc <span style='color:#111;'> 1.47KB </span>","children":null,"spread":false},{"title":"test_main.cpython-38-pytest-6.2.2.pyc <span style='color:#111;'> 2.27KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"test_main.py <span style='color:#111;'> 950B </span>","children":null,"spread":false}],"spread":true},{"title":".env <span style='color:#111;'> 34B </span>","children":null,"spread":false},{"title":"src","children":[{"title":"main.py <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"main.cpython-37.pyc <span style='color:#111;'> 954B </span>","children":null,"spread":false},{"title":"model.cpython-37.pyc <span style='color:#111;'> 1.72KB </span>","children":null,"spread":false},{"title":"locustfile.cpython-37.pyc <span style='color:#111;'> 720B </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 1.40KB </span>","children":null,"spread":false}],"spread":true},{"title":"load_test","children":[{"title":"locustfile.py <span style='color:#111;'> 366B </span>","children":null,"spread":false}],"spread":true},{"title":"requirements.txt <span style='color:#111;'> 92B </span>","children":null,"spread":false},{"title":"docker-compose.yml <span style='color:#111;'> 292B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 2.00KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.73KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明