图像配准-源码

上传者: 42118770 | 上传时间: 2022-03-09 10:52:30 | 文件大小: 299KB | 文件类型: -
AAN:医学图像注册的外观调整网络 图像配准是许多医学图像分析的基础。 精确图像配准的主要障碍是图像外观的变化。 最近,使用深度神经网络的基于深度学习的注册方法(DLR)的计算效率比传统的基于优化的注册方法(OR)高几个数量级。 但是,DLR的一个主要缺点是无视OR中固有的特定于目标对的优化,而是依赖于使用一组训练样本进行训练的全局优化网络来实现更快的注册。 因此,当图像对(固定/运动图像)的外观差异较大时,与OR相比,DLR固有地具有降低的适应外观变化的能力,并且性能较差。 因此,我们提出了外观调整网络(AAN),其中我们通过解剖结构受限的损失函数来利用解剖结构边缘,以生成保留解剖结构的外观变换。 我们设计了AAN,以便可以轻松地将其插入各种DLR中,以减少固定图像和运动图像之间的外观差异。 我们的AAN和DLR的网络可以无监督且端到端的方式进行协作培训。 工作流程 出版物 快来了。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明