BEGAN:Tensorflow中的边界均衡生成对抗网络的实现-源码

上传者: 42118160 | 上传时间: 2021-12-21 15:17:45 | 文件大小: 853KB | 文件类型: -
开始:边界平衡生成对抗网络 这是关于边界均衡生成对抗网络的论文的实现 。 依存关系 Python 3+ 麻木 张量流 tqdm h5py scipy(可选) 什么是边界均衡生成对抗网络? 与标准的生成对抗网络,边界平衡生成对抗网络(BEGAN)使用自动编码器作为判别器。 定义自动编码器损耗,然后在真实样本和生成的样本的像素式自动编码器损耗分布之间计算Wasserstein距离的近似值。 在定义了自动编码器损耗的情况下(上图),Wasserstein距离近似简化为损耗函数,其中可区分的自动编码器的目标是在真实样本上表现出色,而在生成的样本上表现不佳,而生成器的目标是生成具有鉴别力的对抗样本忍不住表现出色。 此外,引入了超参数伽玛,它使用户能够通过平衡鉴别器和发生器来控制样品的多样性。 伽玛通过使用加权参数k来生效,该参数在训练时会进行更新以适应损失函数,从而使我们的输出与所需的

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明