CMU-MultimodalSDK:CMU MultimodalSDK是一个机器学习平台,用于开发高级多峰模型以及轻松访问和处理多峰数据集-源码

上传者: 42118160 | 上传时间: 2021-09-10 10:51:12 | 文件大小: 307KB | 文件类型: ZIP
CMU-Multimodal SDK版本1.2.0(mmsdk) CMU-Multimodal SDK提供了一些工具,可以轻松加载知名的多峰数据集并快速构建神经多峰深度模型。 因此,SDK包含两个模块:1)mmdatasdk:使用计算序列下载和处理多峰数据集的模块。 2)mmmodelsdk:利用复杂神经模型以及用于构建新模型的层的工具。 先前论文中的融合模型将在这里发布。 这里的所有数据集都是使用SDK处理的(甚至是使用SDK V0的old_processed_data文件夹)。 您可以通过在数据集上调用以下函数来获取项目中使用的计算序列的引用: >> > mydataset . bib_citations ( open ( 'mydataset.bib' , 'w' )) >> > mycompseq . bib_citations ( open ( 'mycompseq.bib

文件下载

资源详情

[{"title":"( 63 个子文件 307KB ) CMU-MultimodalSDK:CMU MultimodalSDK是一个机器学习平台,用于开发高级多峰模型以及轻松访问和处理多峰数据集-源码","children":[{"title":"CMU-MultimodalSDK-master","children":[{"title":".gitignore <span style='color:#111;'> 74B </span>","children":null,"spread":false},{"title":"next_steps.md <span style='color:#111;'> 884B </span>","children":null,"spread":false},{"title":"mmsdk","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"mmmodelsdk","children":[{"title":"__init__.py <span style='color:#111;'> 51B </span>","children":null,"spread":false},{"title":"fusion","children":[{"title":"multiple_attention","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 3.28KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 300B </span>","children":null,"spread":false},{"title":"recurrent_fusion","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 2.07KB </span>","children":null,"spread":false}],"spread":true},{"title":"tensor_fusion","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.19KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 2.02KB </span>","children":null,"spread":false}],"spread":true},{"title":"dynamic_fusion_graph","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 4.74KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"modules","children":[{"title":"__init__.py <span style='color:#111;'> 39B </span>","children":null,"spread":false},{"title":"LSTHM","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"test.py <span style='color:#111;'> 821B </span>","children":null,"spread":false},{"title":"LSTHM.py <span style='color:#111;'> 863B </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true},{"title":"mmdatasdk","children":[{"title":"dataset","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"dataset.py <span style='color:#111;'> 19.09KB </span>","children":null,"spread":false},{"title":"standard_datasets","children":[{"title":"POM","children":[{"title":"__init__.py <span style='color:#111;'> 177B </span>","children":null,"spread":false},{"title":"pom_std_folds.py <span style='color:#111;'> 8.55KB </span>","children":null,"spread":false},{"title":"pom.py <span style='color:#111;'> 679B </span>","children":null,"spread":false}],"spread":true},{"title":"CMU_MOSI","children":[{"title":"cmu_mosi.py <span style='color:#111;'> 1.21KB </span>","children":null,"spread":false},{"title":"cmu_mosi_std_folds.py <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 195B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 3.29KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"SocialIQ","children":[{"title":"__init__.py <span style='color:#111;'> 184B </span>","children":null,"spread":false},{"title":"socialiq.py <span style='color:#111;'> 803B </span>","children":null,"spread":false},{"title":"socialiq_std_folds.py <span style='color:#111;'> 13.92KB </span>","children":null,"spread":false}],"spread":false},{"title":"CMU_MOSEI","children":[{"title":"__init__.py <span style='color:#111;'> 207B </span>","children":null,"spread":false},{"title":"cmu_mosei_std_folds.py <span style='color:#111;'> 44.95KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.51KB </span>","children":null,"spread":false},{"title":"cmu_mosei.py <span style='color:#111;'> 1.01KB </span>","children":null,"spread":false}],"spread":false},{"title":"CMU_MOSEAS","children":[{"title":"Europe","children":[{"title":"readme.md <span style='color:#111;'> 947B </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 482B </span>","children":null,"spread":false},{"title":"log","children":[{"title":"__init__.py <span style='color:#111;'> 20B </span>","children":null,"spread":false},{"title":"log.py <span style='color:#111;'> 3.40KB </span>","children":null,"spread":false}],"spread":true},{"title":"computational_sequence","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"blank.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"computational_sequence.py <span style='color:#111;'> 7.40KB </span>","children":null,"spread":false},{"title":"download_ops.py <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false},{"title":"integrity_check.py <span style='color:#111;'> 3.27KB </span>","children":null,"spread":false},{"title":"file_ops.py <span style='color:#111;'> 3.11KB </span>","children":null,"spread":false}],"spread":true},{"title":"configurations","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"metadataconfigs.py <span style='color:#111;'> 593B </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true},{"title":"LICENSE.txt <span style='color:#111;'> 1.52KB </span>","children":null,"spread":false},{"title":"examples","children":[{"title":"sdk_diagnostics","children":[{"title":"README.md <span style='color:#111;'> 97B </span>","children":null,"spread":false},{"title":"checkall.sh <span style='color:#111;'> 56B </span>","children":null,"spread":false},{"title":"scenario1.py <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false}],"spread":true},{"title":"compseq.png <span style='color:#111;'> 249.76KB </span>","children":null,"spread":false},{"title":"mmdatasdk_examples","children":[{"title":"full_examples","children":[{"title":"process_mosi.py <span style='color:#111;'> 3.52KB </span>","children":null,"spread":false},{"title":"process_mosei.py <span style='color:#111;'> 2.88KB </span>","children":null,"spread":false}],"spread":true},{"title":"basics","children":[{"title":"justin_github.py <span style='color:#111;'> 219B </span>","children":null,"spread":false},{"title":"create_toy_computational_sequence.py <span style='color:#111;'> 1.83KB </span>","children":null,"spread":false},{"title":"read_dataset_by_folder.py <span style='color:#111;'> 487B </span>","children":null,"spread":false},{"title":"download_dataset.py <span style='color:#111;'> 1004B </span>","children":null,"spread":false},{"title":"read_dataset_by_files.py <span style='color:#111;'> 961B </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true},{"title":"related_repos","children":[{"title":"Tensor_Fusion","children":[{"title":"Tensor_Fusion.md <span style='color:#111;'> 519B </span>","children":null,"spread":false}],"spread":true},{"title":"Memory_Fusion_Network","children":[{"title":"Memory_Fusion_Network.md <span style='color:#111;'> 244B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"README.md <span style='color:#111;'> 17.33KB </span>","children":null,"spread":false},{"title":"clean.sh <span style='color:#111;'> 81B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明