MaskFormer:每像素分类并不是语义分割所需要的全部

上传者: 42117485 | 上传时间: 2025-10-14 13:26:14 | 文件大小: 348KB | 文件类型: ZIP
MaskFormer:每像素分类并不是语义分割所需要的全部 、、 [ ] [ ] [ ] 特征 在提高效率的同时获得更好的结果。 语义和实例级分割任务的统一视图。 支持主要语义分割数据集:ADE20K、Cityscapes、COCO-Stuff、Mapillary Vistas。 支持所有Detectron2 型号。 安装 请参阅。 入门 请参阅。 请参阅MaskFormer 入门。 模型动物园和基线 我们提供了大量基线结果和训练模型,可在MaskFormer Model Zoo 中下载。 执照 盾: MaskFormer 的大部分内容均采用知识共享署名-非商业性使用 4.0 国际许可协议进行许可。 但是,该项目的部分内容根据单独的许可条款提供:Swin-Transformer-Semantic-Segmentation 根据MIT 许可获得许可。 引用 Mask

文件下载

资源详情

[{"title":"( 88 个子文件 348KB ) MaskFormer:每像素分类并不是语义分割所需要的全部","children":[{"title":"MaskFormer-master","children":[{"title":"configs","children":[{"title":"cityscapes-19","children":[{"title":"maskformer_R101_bs16_90k.yaml <span style='color:#111;'> 883B </span>","children":null,"spread":false},{"title":"maskformer_R101c_bs16_90k.yaml <span style='color:#111;'> 446B </span>","children":null,"spread":false},{"title":"Base-Cityscapes-19.yaml <span style='color:#111;'> 1.44KB </span>","children":null,"spread":false}],"spread":true},{"title":"ade20k-150-panoptic","children":[{"title":"maskformer_panoptic_R50_bs16_720k.yaml <span style='color:#111;'> 890B </span>","children":null,"spread":false},{"title":"maskformer_panoptic_R101_bs16_720k.yaml <span style='color:#111;'> 304B </span>","children":null,"spread":false}],"spread":true},{"title":"ade20k-full-847","children":[{"title":"Base-ADE20KFull-847.yaml <span style='color:#111;'> 1.35KB </span>","children":null,"spread":false},{"title":"maskformer_R50_bs16_200k.yaml <span style='color:#111;'> 637B </span>","children":null,"spread":false},{"title":"per_pixel_baseline_R50_bs16_200k.yaml <span style='color:#111;'> 343B </span>","children":null,"spread":false},{"title":"maskformer_R101c_bs16_200k.yaml <span style='color:#111;'> 349B </span>","children":null,"spread":false},{"title":"maskformer_R101_bs16_200k.yaml <span style='color:#111;'> 295B </span>","children":null,"spread":false},{"title":"per_pixel_baseline_plus_R50_bs16_200k.yaml <span style='color:#111;'> 624B </span>","children":null,"spread":false}],"spread":true},{"title":"ade20k-150","children":[{"title":"Base-ADE20K-150.yaml <span style='color:#111;'> 1.44KB </span>","children":null,"spread":false},{"title":"maskformer_R101_bs16_160k.yaml <span style='color:#111;'> 295B </span>","children":null,"spread":false},{"title":"swin","children":[{"title":"maskformer_swin_small_bs16_160k.yaml <span style='color:#111;'> 547B </span>","children":null,"spread":false},{"title":"maskformer_swin_base_IN21k_384_bs16_160k_res640.yaml <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"maskformer_swin_tiny_bs16_160k.yaml <span style='color:#111;'> 545B </span>","children":null,"spread":false},{"title":"maskformer_swin_large_IN21k_384_bs16_160k_res640.yaml <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false}],"spread":true},{"title":"maskformer_R101c_bs16_160k.yaml <span style='color:#111;'> 349B </span>","children":null,"spread":false},{"title":"per_pixel_baseline_plus_R50_bs16_160k.yaml <span style='color:#111;'> 618B </span>","children":null,"spread":false},{"title":"per_pixel_baseline_R50_bs16_160k.yaml <span style='color:#111;'> 337B </span>","children":null,"spread":false},{"title":"maskformer_R50_bs16_160k.yaml <span style='color:#111;'> 631B </span>","children":null,"spread":false}],"spread":true},{"title":"coco-stuff-10k-171","children":[{"title":"maskformer_R101_bs32_60k.yaml <span style='color:#111;'> 294B </span>","children":null,"spread":false},{"title":"maskformer_R101c_bs32_60k.yaml <span style='color:#111;'> 348B </span>","children":null,"spread":false},{"title":"per_pixel_baseline_plus_R50_bs32_60k.yaml <span style='color:#111;'> 624B </span>","children":null,"spread":false},{"title":"Base-COCOStuff10K-171.yaml <span style='color:#111;'> 1.47KB </span>","children":null,"spread":false},{"title":"maskformer_R50_bs32_60k.yaml <span style='color:#111;'> 637B </span>","children":null,"spread":false},{"title":"per_pixel_baseline_R50_bs32_60k.yaml <span style='color:#111;'> 343B </span>","children":null,"spread":false}],"spread":true},{"title":"mapillary-vistas-65","children":[{"title":"maskformer_R50_bs16_300k.yaml <span style='color:#111;'> 637B </span>","children":null,"spread":false},{"title":"Base-MapillaryVistas-65.yaml <span style='color:#111;'> 1.36KB </span>","children":null,"spread":false}],"spread":true},{"title":"coco-panoptic","children":[{"title":"maskformer_panoptic_R50_bs64_554k.yaml <span style='color:#111;'> 945B </span>","children":null,"spread":false},{"title":"Base-COCO-PanopticSegmentation.yaml <span style='color:#111;'> 1.11KB </span>","children":null,"spread":false},{"title":"maskformer_panoptic_R101_bs64_554k.yaml <span style='color:#111;'> 304B </span>","children":null,"spread":false},{"title":"swin","children":[{"title":"maskformer_panoptic_swin_large_IN21k_384_bs64_554k.yaml <span style='color:#111;'> 1019B </span>","children":null,"spread":false},{"title":"maskformer_panoptic_swin_base_IN21k_384_bs64_554k.yaml <span style='color:#111;'> 822B </span>","children":null,"spread":false},{"title":"maskformer_panoptic_swin_small_bs64_554k.yaml <span style='color:#111;'> 790B </span>","children":null,"spread":false},{"title":"maskformer_panoptic_swin_tiny_bs64_554k.yaml <span style='color:#111;'> 788B </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true},{"title":"GETTING_STARTED.md <span style='color:#111;'> 2.33KB </span>","children":null,"spread":false},{"title":"train_net.py <span style='color:#111;'> 10.01KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 30B </span>","children":null,"spread":false},{"title":"demo","children":[{"title":"demo.py <span style='color:#111;'> 6.77KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 163B </span>","children":null,"spread":false},{"title":"predictor.py <span style='color:#111;'> 7.75KB </span>","children":null,"spread":false}],"spread":true},{"title":"datasets","children":[{"title":"prepare_ade20k_sem_seg.py <span style='color:#111;'> 896B </span>","children":null,"spread":false},{"title":"ade20k_instance_catid_mapping.txt <span style='color:#111;'> 1.31KB </span>","children":null,"spread":false},{"title":"ade20k_instance_imgCatIds.json <span style='color:#111;'> 2.01MB </span>","children":null,"spread":false},{"title":"prepare_coco_stuff_10k_v1.0_sem_seg.py <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 5.13KB </span>","children":null,"spread":false},{"title":"prepare_ade20k_full_sem_seg.py <span style='color:#111;'> 52.17KB </span>","children":null,"spread":false},{"title":"prepare_ade20k_pan_seg.py <span style='color:#111;'> 12.75KB </span>","children":null,"spread":false}],"spread":true},{"title":"CONTRIBUTING.md <span style='color:#111;'> 1.58KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 18.88KB </span>","children":null,"spread":false},{"title":"tools","children":[{"title":"convert-pretrained-swin-model-to-d2.py <span style='color:#111;'> 856B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.35KB </span>","children":null,"spread":false},{"title":"convert-torchvision-to-d2.py <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false}],"spread":true},{"title":"MODEL_ZOO.md <span style='color:#111;'> 24.92KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.23KB </span>","children":null,"spread":false},{"title":"CODE_OF_CONDUCT.md <span style='color:#111;'> 244B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 555B </span>","children":null,"spread":false},{"title":"mask_former","children":[{"title":"test_time_augmentation.py <span style='color:#111;'> 4.07KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"misc.py <span style='color:#111;'> 3.81KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 51B </span>","children":null,"spread":false}],"spread":false},{"title":"config.py <span style='color:#111;'> 2.93KB </span>","children":null,"spread":false},{"title":"modeling","children":[{"title":"backbone","children":[{"title":"swin.py <span style='color:#111;'> 26.74KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 51B </span>","children":null,"spread":false}],"spread":false},{"title":"criterion.py <span style='color:#111;'> 8.17KB </span>","children":null,"spread":false},{"title":"heads","children":[{"title":"per_pixel_baseline.py <span style='color:#111;'> 9.17KB </span>","children":null,"spread":false},{"title":"pixel_decoder.py <span style='color:#111;'> 11.25KB </span>","children":null,"spread":false},{"title":"mask_former_head.py <span style='color:#111;'> 4.62KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 51B </span>","children":null,"spread":false}],"spread":false},{"title":"__init__.py <span style='color:#111;'> 282B </span>","children":null,"spread":false},{"title":"transformer","children":[{"title":"__init__.py <span style='color:#111;'> 51B </span>","children":null,"spread":false},{"title":"position_encoding.py <span style='color:#111;'> 1.99KB </span>","children":null,"spread":false},{"title":"transformer_predictor.py <span style='color:#111;'> 6.23KB </span>","children":null,"spread":false},{"title":"transformer.py <span style='color:#111;'> 11.66KB </span>","children":null,"spread":false}],"spread":false},{"title":"matcher.py <span style='color:#111;'> 7.18KB </span>","children":null,"spread":false}],"spread":false},{"title":"__init__.py <span style='color:#111;'> 618B </span>","children":null,"spread":false},{"title":"mask_former_model.py <span style='color:#111;'> 12.61KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"dataset_mappers","children":[{"title":"detr_panoptic_dataset_mapper.py <span style='color:#111;'> 6.25KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 51B </span>","children":null,"spread":false},{"title":"mask_former_semantic_dataset_mapper.py <span style='color:#111;'> 6.71KB </span>","children":null,"spread":false},{"title":"mask_former_panoptic_dataset_mapper.py <span style='color:#111;'> 6.08KB </span>","children":null,"spread":false}],"spread":false},{"title":"__init__.py <span style='color:#111;'> 74B </span>","children":null,"spread":false},{"title":"datasets","children":[{"title":"register_mapillary_vistas.py <span style='color:#111;'> 12.71KB </span>","children":null,"spread":false},{"title":"register_ade20k_full.py <span style='color:#111;'> 50.99KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 185B </span>","children":null,"spread":false},{"title":"register_ade20k_panoptic.py <span style='color:#111;'> 19.07KB </span>","children":null,"spread":false},{"title":"register_coco_stuff_10k.py <span style='color:#111;'> 13.24KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":false},{"title":"INSTALL.md <span style='color:#111;'> 555B </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明