( 16 个子文件 389KB ) NER-LSTM-CRF:一个易于使用的命名实体识别(NER)工具包,在张量流中实现了Bi-LSTM + CRF模型-源码
train_word2vec_model.py 1.08KB
[{"title":"( 16 个子文件 389KB ) NER-LSTM-CRF:一个易于使用的命名实体识别(NER)工具包,在张量流中实现了Bi-LSTM + CRF模型-源码","children":[{"title":"NER-LSTM-CRF-master","children":[{"title":"README.md <span style='color:#111;'> 5.73KB </span>","children":null,"spread":false},{"title":"test.py <span style='color:#111;'> 4.58KB </span>","children":null,"spread":false},{"title":"load_data.py <span style='color:#111;'> 3.16KB </span>","children":null,"spread":false},{"title":"preprocessing.py <span style='color:#111;'> 8.09KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 3.97KB </span>","children":null,"spread":false},{"title":"Model","children":[{"title":"your_model <span style='color:#111;'> 1B </span>","children":null,"spread":false}],"spread":true},{"title":"Utils","children":[{"title":"README.md <span style='color:#111;'> 328B </span>","children":null,"spread":false},{"title":"trietree.py <span style='color:#111;'> 4.97KB </span>","children":null,"spread":false},{"title":"train_word2vec_model.py <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false}],"spread":true},{"title":"utils.py <span style='color:#111;'> 6.29KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 24.26KB </span>","children":null,"spread":false},{"title":"config.yml <span style='color:#111;'> 1.23KB </span>","children":null,"spread":false},{"title":"Res","children":[{"title":"embed","children":[{"title":"some_embed <span style='color:#111;'> 1B </span>","children":null,"spread":false}],"spread":true},{"title":"voc","children":[{"title":"some_voc <span style='color:#111;'> 1B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"data","children":[{"title":"sample_train.txt <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false},{"title":"embedding.txt <span style='color:#111;'> 873.78KB </span>","children":null,"spread":false}],"spread":true}],"spread":false}],"spread":true}]