coursera-machinelearning-python:以 ipython 笔记本的形式进行 Coursera 机器学习课程的骨架代码

上传者: 42117037 | 上传时间: 2022-11-29 08:49:15 | 文件大小: 26.17MB | 文件类型: ZIP
coursera-机器学习-python coursera 机器学习课程练习的骨架代码,以 ipython 笔记本的形式。 你需要什么来运行这个 Python 3 麻木的 scipy matplotlib 熊猫 scikit 学习 枕头 获得这些最方便的方法是通过 Anaconda 科学 Python 发行版。 此代码是为 Python 3 编写的。如果您希望使用 Python 2,请不要害怕。 您可能需要更改一些打印语句,但仅此而已。

文件下载

资源详情

[{"title":"( 42 个子文件 26.17MB ) coursera-machinelearning-python:以 ipython 笔记本的形式进行 Coursera 机器学习课程的骨架代码","children":[{"title":"coursera-machinelearning-python-master","children":[{"title":"ex4","children":[{"title":"ex4weights.mat <span style='color:#111;'> 77.73KB </span>","children":null,"spread":false},{"title":"ml-ex4.ipynb <span style='color:#111;'> 20.20KB </span>","children":null,"spread":false},{"title":"ex4data1.mat <span style='color:#111;'> 7.16MB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE.md <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"ex7","children":[{"title":"bird_small.mat <span style='color:#111;'> 44.54KB </span>","children":null,"spread":false},{"title":"ex7data1.mat <span style='color:#111;'> 995B </span>","children":null,"spread":false},{"title":"ex7faces.mat <span style='color:#111;'> 10.52MB </span>","children":null,"spread":false},{"title":"bird_small.png <span style='color:#111;'> 32.26KB </span>","children":null,"spread":false},{"title":"ml-ex7-kmeans.ipynb <span style='color:#111;'> 14.13KB </span>","children":null,"spread":false},{"title":"ex7data2.mat <span style='color:#111;'> 4.67KB </span>","children":null,"spread":false},{"title":"ml-ex7-pca.ipynb <span style='color:#111;'> 244.77KB </span>","children":null,"spread":false}],"spread":true},{"title":"ex3","children":[{"title":"ex3weights.mat <span style='color:#111;'> 77.73KB </span>","children":null,"spread":false},{"title":"ml-ex3-2.ipynb <span style='color:#111;'> 3.82KB </span>","children":null,"spread":false},{"title":"ex3data1.mat <span style='color:#111;'> 7.16MB </span>","children":null,"spread":false},{"title":"ml-ex3-onevsall.ipynb <span style='color:#111;'> 10.92KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 506B </span>","children":null,"spread":false},{"title":"ex8","children":[{"title":"ml-ex8-recommender-systems.ipynb <span style='color:#111;'> 63.00KB </span>","children":null,"spread":false},{"title":"ex8data2.mat <span style='color:#111;'> 91.29KB </span>","children":null,"spread":false},{"title":"ex8data1.mat <span style='color:#111;'> 9.28KB </span>","children":null,"spread":false},{"title":"movie_ids.txt <span style='color:#111;'> 47.31KB </span>","children":null,"spread":false},{"title":"ex8_movieParams.mat <span style='color:#111;'> 196.48KB </span>","children":null,"spread":false},{"title":"iterate.dat <span style='color:#111;'> 851B </span>","children":null,"spread":false},{"title":"ex8_movies.mat <span style='color:#111;'> 218.16KB </span>","children":null,"spread":false},{"title":"ml-ex8-anomaly-detection.ipynb <span style='color:#111;'> 9.55KB </span>","children":null,"spread":false}],"spread":true},{"title":"ex6","children":[{"title":"ex6data2.mat <span style='color:#111;'> 7.43KB </span>","children":null,"spread":false},{"title":"ml-ex6.ipynb <span style='color:#111;'> 8.75KB </span>","children":null,"spread":false},{"title":"spamSample2.txt <span style='color:#111;'> 245B </span>","children":null,"spread":false},{"title":"ex6data3.mat <span style='color:#111;'> 5.90KB </span>","children":null,"spread":false},{"title":"vocab.txt <span style='color:#111;'> 19.77KB </span>","children":null,"spread":false},{"title":"spamSample1.txt <span style='color:#111;'> 655B </span>","children":null,"spread":false},{"title":"spamTrain.mat <span style='color:#111;'> 418.76KB </span>","children":null,"spread":false},{"title":"spamTest.mat <span style='color:#111;'> 110.08KB </span>","children":null,"spread":false},{"title":"ex6data1.mat <span style='color:#111;'> 981B </span>","children":null,"spread":false}],"spread":true},{"title":"ex5","children":[{"title":"ex5data1.mat <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"ml-ex5.ipynb <span style='color:#111;'> 20.23KB </span>","children":null,"spread":false}],"spread":true},{"title":"ex2","children":[{"title":"ml-ex2.ipynb <span style='color:#111;'> 15.42KB </span>","children":null,"spread":false},{"title":"ex2data1.txt <span style='color:#111;'> 3.69KB </span>","children":null,"spread":false},{"title":"ex2data2.txt <span style='color:#111;'> 2.18KB </span>","children":null,"spread":false}],"spread":true},{"title":"ex1","children":[{"title":"ex1data2.txt <span style='color:#111;'> 657B </span>","children":null,"spread":false},{"title":"ex1data1.txt <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false},{"title":"ml-ex1-multivariate.ipynb <span style='color:#111;'> 11.61KB </span>","children":null,"spread":false},{"title":"ml-ex1.ipynb <span style='color:#111;'> 10.31KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明