高级车道查找:用于检测车道线的高级车道查找项目-源码

上传者: 42117037 | 上传时间: 2021-09-24 17:09:55 | 文件大小: 69.99MB | 文件类型: ZIP
高级车道查找 该项目的目标是编写一个软件管道来识别视频中的车道边界。 该项目 该项目的目标/步骤如下: 给定一组棋盘图像,计算相机校准矩阵和失真系数。 对原始图像应用失真校正。 使用颜色变换,渐变等创建阈值二进制图像。 应用透视变换以校正二进制图像(“鸟瞰”)。 检测车道像素并拟合以找到车道边界。 确定车道的曲率和车辆相对于中心的位置。 将检测到的车道边界扭曲回原始图像。 输出车道边界的可视化显示以及车道曲率和车辆位置的数值估计。 用于相机校准的图像存储在名为camera_cal的文件夹中。 test_images中的图像用于在单个帧上测试管道。 challenge_video.mp4视频是在有些棘手的条件下测试管道的一项额外挑战。 harder_challenge.mp4视频是另一个挑战,非常残酷!

文件下载

资源详情

[{"title":"( 42 个子文件 69.99MB ) 高级车道查找:用于检测车道线的高级车道查找项目-源码","children":[{"title":"Advanced-Lane-Finding-main","children":[{"title":".ipynb_checkpoints","children":[{"title":"Advanced Lane Finding-checkpoint.ipynb <span style='color:#111;'> 7.20MB </span>","children":null,"spread":false}],"spread":true},{"title":"project_video.mp4 <span style='color:#111;'> 24.10MB </span>","children":null,"spread":false},{"title":"examples","children":[{"title":".ipynb_checkpoints","children":[{"title":"example-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false}],"spread":true},{"title":"binary_combo_example.jpg <span style='color:#111;'> 164.76KB </span>","children":null,"spread":false},{"title":"warped_straight_lines.jpg <span style='color:#111;'> 212.18KB </span>","children":null,"spread":false},{"title":"undistort_output.png <span style='color:#111;'> 145.52KB </span>","children":null,"spread":false},{"title":"example.ipynb <span style='color:#111;'> 3.16KB </span>","children":null,"spread":false},{"title":"example_output.jpg <span style='color:#111;'> 143.57KB </span>","children":null,"spread":false},{"title":"color_fit_lines.jpg <span style='color:#111;'> 66.47KB </span>","children":null,"spread":false},{"title":"example.py <span style='color:#111;'> 291B </span>","children":null,"spread":false}],"spread":true},{"title":"test_images","children":[{"title":"test2.jpg <span style='color:#111;'> 170.13KB </span>","children":null,"spread":false},{"title":"straight_lines1.jpg <span style='color:#111;'> 151.42KB </span>","children":null,"spread":false},{"title":"test1.jpg <span style='color:#111;'> 212.15KB </span>","children":null,"spread":false},{"title":"straight_lines2.jpg <span style='color:#111;'> 188.57KB </span>","children":null,"spread":false},{"title":"test6.jpg <span style='color:#111;'> 226.65KB </span>","children":null,"spread":false},{"title":"test4.jpg <span style='color:#111;'> 196.48KB </span>","children":null,"spread":false},{"title":"test3.jpg <span style='color:#111;'> 144.12KB </span>","children":null,"spread":false},{"title":"test5.jpg <span style='color:#111;'> 238.16KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"camera_cal","children":[{"title":"calibration20.jpg <span style='color:#111;'> 115.62KB </span>","children":null,"spread":false},{"title":"calibration17.jpg <span style='color:#111;'> 95.95KB </span>","children":null,"spread":false},{"title":"calibration18.jpg <span style='color:#111;'> 87.00KB </span>","children":null,"spread":false},{"title":"calibration7.jpg <span style='color:#111;'> 110.27KB </span>","children":null,"spread":false},{"title":"calibration9.jpg <span style='color:#111;'> 123.41KB </span>","children":null,"spread":false},{"title":"calibration4.jpg <span style='color:#111;'> 140.03KB </span>","children":null,"spread":false},{"title":"calibration3.jpg <span style='color:#111;'> 140.78KB </span>","children":null,"spread":false},{"title":"calibration13.jpg <span style='color:#111;'> 111.79KB </span>","children":null,"spread":false},{"title":"calibration14.jpg <span style='color:#111;'> 95.52KB </span>","children":null,"spread":false},{"title":"calibration6.jpg <span style='color:#111;'> 129.38KB </span>","children":null,"spread":false},{"title":"calibration2.jpg <span style='color:#111;'> 134.73KB </span>","children":null,"spread":false},{"title":"calibration11.jpg <span style='color:#111;'> 122.92KB </span>","children":null,"spread":false},{"title":"calibration8.jpg <span style='color:#111;'> 126.25KB </span>","children":null,"spread":false},{"title":"calibration15.jpg <span style='color:#111;'> 96.69KB </span>","children":null,"spread":false},{"title":"calibration19.jpg <span style='color:#111;'> 103.36KB </span>","children":null,"spread":false},{"title":"calibration10.jpg <span style='color:#111;'> 139.33KB </span>","children":null,"spread":false},{"title":"calibration1.jpg <span style='color:#111;'> 123.50KB </span>","children":null,"spread":false},{"title":"calibration12.jpg <span style='color:#111;'> 114.10KB </span>","children":null,"spread":false},{"title":"calibration16.jpg <span style='color:#111;'> 97.30KB </span>","children":null,"spread":false},{"title":"calibration5.jpg <span style='color:#111;'> 134.31KB </span>","children":null,"spread":false}],"spread":false},{"title":"challenge_video.mp4 <span style='color:#111;'> 7.76MB </span>","children":null,"spread":false},{"title":"harder_challenge_video.mp4 <span style='color:#111;'> 23.09MB </span>","children":null,"spread":false},{"title":"Advanced Lane Finding.ipynb <span style='color:#111;'> 7.20MB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明