[{"title":"( 32 个子文件 33.95MB ) 人行道检测:深度学习中的人行道检测-源码","children":[{"title":"SidewalkDetection-master","children":[{"title":".gitattributes <span style='color:#111;'> 66B </span>","children":null,"spread":false},{"title":"references","children":[{"title":"Detecting Unexpected Obstacles for Self-Driving Cars- Fusing Deep Learning and Geometric Modeling.pdf <span style='color:#111;'> 4.55MB </span>","children":null,"spread":false},{"title":"基于边界跟踪的高实时性盲道识别算法.pdf <span style='color:#111;'> 2.24MB </span>","children":null,"spread":false},{"title":"改进的多特征融合人行道检测算法_胡强.pdf <span style='color:#111;'> 2.32MB </span>","children":null,"spread":false},{"title":"Ref.bib <span style='color:#111;'> 3.74KB </span>","children":null,"spread":false},{"title":"Unsupervised obstacle detection in driving environments using deep-learning-based stereovision.pdf <span style='color:#111;'> 9.23MB </span>","children":null,"spread":false},{"title":"基于机器学习识别与标记分水岭分割的盲道图像定位_魏彤.pdf <span style='color:#111;'> 841.90KB </span>","children":null,"spread":false},{"title":"Yang_DenseASPP_for_Semantic_CVPR_2018_paper.pdf <span style='color:#111;'> 930.53KB </span>","children":null,"spread":false},{"title":"Ref.bib.bak <span style='color:#111;'> 3.74KB </span>","children":null,"spread":false},{"title":"Deep Learning for Automatically Detecting Sidewalk Accessibility Problems Using Streetscape Imagery.pdf <span style='color:#111;'> 13.71MB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 57B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 32B </span>","children":null,"spread":false},{"title":"SidewalkDetection","children":[{"title":"src","children":[{"title":"html_gene.py <span style='color:#111;'> 2.45KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 3.85KB </span>","children":null,"spread":false},{"title":"pre.py <span style='color:#111;'> 4.11KB </span>","children":null,"spread":false},{"title":"results","children":[{"title":"images_output_template.html <span style='color:#111;'> 674B </span>","children":null,"spread":false},{"title":"train_output_template.html <span style='color:#111;'> 670B </span>","children":null,"spread":false}],"spread":true},{"title":"processor.py <span style='color:#111;'> 4.15KB </span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'> 29B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 54B </span>","children":null,"spread":false},{"title":"resources","children":[{"title":"target","children":[{"title":"aachen_000000_000019_gtFine_color.png <span style='color:#111;'> 29.22KB </span>","children":null,"spread":false}],"spread":false},{"title":"data","children":[{"title":"aachen_000000_000019_leftImg8bit.png <span style='color:#111;'> 2.04MB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true},{"title":".idea","children":[{"title":"misc.xml <span style='color:#111;'> 288B </span>","children":null,"spread":false},{"title":"other.xml <span style='color:#111;'> 186B </span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'> 12.69KB </span>","children":null,"spread":false},{"title":"dictionaries","children":[{"title":"IanDXSSXX.xml <span style='color:#111;'> 237B </span>","children":null,"spread":false}],"spread":true},{"title":"inspectionProfiles","children":[{"title":"Project_Default.xml <span style='color:#111;'> 1.70KB </span>","children":null,"spread":false},{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":true},{"title":"modules.xml <span style='color:#111;'> 286B </span>","children":null,"spread":false},{"title":"SidewalkDetection.iml <span style='color:#111;'> 371B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"vcs.xml <span style='color:#111;'> 183B </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}],"spread":true}]