[{"title":"( 41 个子文件 61KB ) NumericalAnalysis:数值分析简要算法实现","children":[{"title":"NumericalAnalysis-master","children":[{"title":"数值分析Java实现——拉格朗日(Lagrange)插值多项式&牛顿(Newton)插值多项式&线性拟合数据.md <span style='color:#111;'> 11.84KB </span>","children":null,"spread":false},{"title":"NumericalAnalysis","children":[{"title":"NumericalAnalysis.iml <span style='color:#111;'> 423B </span>","children":null,"spread":false},{"title":"src","children":[{"title":"UNIT05","children":[{"title":"Jacobi.java <span style='color:#111;'> 2.64KB </span>","children":null,"spread":false}],"spread":true},{"title":"UNIT02","children":[{"title":"math","children":[{"title":"Tool.java <span style='color:#111;'> 1.87KB </span>","children":null,"spread":false},{"title":"MainTest.java <span style='color:#111;'> 4.56KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"UNIT01","children":[{"title":"Newton","children":[{"title":"Test.java <span style='color:#111;'> 971B </span>","children":null,"spread":false},{"title":"NewtonTool.java <span style='color:#111;'> 1.44KB </span>","children":null,"spread":false}],"spread":true},{"title":"Lagrange","children":[{"title":"LagrangeTool.java <span style='color:#111;'> 1.03KB </span>","children":null,"spread":false},{"title":"Test.java <span style='color:#111;'> 1.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"LinearFitting","children":[{"title":"Test.java <span style='color:#111;'> 712B </span>","children":null,"spread":false},{"title":"LinearFitting.java <span style='color:#111;'> 2.26KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"Data","children":[{"title":"InitDataSource.java <span style='color:#111;'> 715B </span>","children":null,"spread":false}],"spread":true},{"title":"UNIT04","children":[{"title":"Dchotomy.java <span style='color:#111;'> 1.66KB </span>","children":null,"spread":false},{"title":"Newton.java <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false},{"title":"Chordcutmethod.java <span style='color:#111;'> 1.58KB </span>","children":null,"spread":false}],"spread":true},{"title":"UNIT03","children":[{"title":"Euler.java <span style='color:#111;'> 1.98KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":".idea","children":[{"title":"misc.xml <span style='color:#111;'> 271B </span>","children":null,"spread":false},{"title":"uiDesigner.xml <span style='color:#111;'> 8.59KB </span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'> 9.70KB </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"Project_Default.xml <span style='color:#111;'> 1.44KB </span>","children":null,"spread":false}],"spread":true},{"title":"modules.xml <span style='color:#111;'> 274B </span>","children":null,"spread":false}],"spread":true},{"title":"out","children":[{"title":"production","children":[{"title":"NumericalAnalysis","children":[{"title":"UNIT05","children":[{"title":"Jacobi.class <span style='color:#111;'> 3.06KB </span>","children":null,"spread":false}],"spread":true},{"title":"UNIT02","children":[{"title":"math","children":[{"title":"MainTest.class <span style='color:#111;'> 4.46KB </span>","children":null,"spread":false},{"title":"Tool.class <span style='color:#111;'> 2.54KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"UNIT01","children":[{"title":"Newton","children":[{"title":"NewtonTool.class <span style='color:#111;'> 1.79KB </span>","children":null,"spread":false},{"title":"Test.class <span style='color:#111;'> 1.92KB </span>","children":null,"spread":false}],"spread":true},{"title":"Lagrange","children":[{"title":"Test.class <span style='color:#111;'> 2.02KB </span>","children":null,"spread":false},{"title":"LagrangeTool.class <span style='color:#111;'> 1.35KB </span>","children":null,"spread":false}],"spread":true},{"title":"LinearFitting","children":[{"title":"LinearFitting.class <span style='color:#111;'> 2.78KB </span>","children":null,"spread":false},{"title":"Test.class <span style='color:#111;'> 1.63KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"META-INF","children":[{"title":"NumericalAnalysis.kotlin_module <span style='color:#111;'> 16B </span>","children":null,"spread":false}],"spread":true},{"title":"Data","children":[{"title":"InitDataSource.class <span style='color:#111;'> 958B </span>","children":null,"spread":false}],"spread":true},{"title":"UNIT04","children":[{"title":"Newton.class <span style='color:#111;'> 2.17KB </span>","children":null,"spread":false},{"title":"Dchotomy.class <span style='color:#111;'> 2.57KB </span>","children":null,"spread":false},{"title":"Chordcutmethod.class <span style='color:#111;'> 2.29KB </span>","children":null,"spread":false}],"spread":false},{"title":"UNIT03","children":[{"title":"Euler.class <span style='color:#111;'> 2.91KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true}],"spread":true}],"spread":true},{"title":"改进的欧拉(Euler)公式&四阶龙格-库塔(Runge-Kutta)方法,解常微分方程初值问题.md <span style='color:#111;'> 7.14KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.03KB </span>","children":null,"spread":false},{"title":"Jacobi法、Gauss-Seidel法、超松弛法求解线性代数方程组.md <span style='color:#111;'> 4.65KB </span>","children":null,"spread":false},{"title":"Java实现二分法、牛顿(Newton)迭代法、快速弦截法方程求根的数值方法.md <span style='color:#111;'> 10.54KB </span>","children":null,"spread":false},{"title":"数值积分的龙贝格(Romberg)算法和梯形变步长算法的对比.md <span style='color:#111;'> 4.66KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]