[{"title":"( 30 个子文件 1.37MB ) SRGAN-PyTorch:使用生成的对抗性网络实现逼真的单图像超分辨率的非官方PyTorch实现-源码","children":[{"title":"SRGAN-PyTorch-master","children":[{"title":"train.py <span style='color:#111;'> 4.59KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"util.py <span style='color:#111;'> 748B </span>","children":null,"spread":false},{"title":"metric.py <span style='color:#111;'> 563B </span>","children":null,"spread":false},{"title":"convert.py <span style='color:#111;'> 1.74KB </span>","children":null,"spread":false},{"title":"logger.py <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false}],"spread":true},{"title":"subset.txt <span style='color:#111;'> 13.08MB </span>","children":null,"spread":false},{"title":"models","children":[{"title":"sr_resnet_model.py <span style='color:#111;'> 4.24KB </span>","children":null,"spread":false},{"title":"modules","children":[{"title":"block.py <span style='color:#111;'> 5.80KB </span>","children":null,"spread":false},{"title":"util.py <span style='color:#111;'> 689B </span>","children":null,"spread":false},{"title":"vgg_feat.py <span style='color:#111;'> 2.19KB </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 1.99KB </span>","children":null,"spread":false},{"title":"generator.py <span style='color:#111;'> 1.26KB </span>","children":null,"spread":false},{"title":"discriminator.py <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false}],"spread":true},{"title":"sr_resnet_test_model.py <span style='color:#111;'> 1.58KB </span>","children":null,"spread":false},{"title":"models.py <span style='color:#111;'> 602B </span>","children":null,"spread":false},{"title":"base_model.py <span style='color:#111;'> 919B </span>","children":null,"spread":false},{"title":"sr_gan_model.py <span style='color:#111;'> 9.36KB </span>","children":null,"spread":false},{"title":"networks.py <span style='color:#111;'> 2.34KB </span>","children":null,"spread":false}],"spread":true},{"title":"test.py <span style='color:#111;'> 3.69KB </span>","children":null,"spread":false},{"title":"options","children":[{"title":"options.py <span style='color:#111;'> 1.61KB </span>","children":null,"spread":false},{"title":"train","children":[{"title":"SRGAN_x4.json <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"SRResNet_x4.json <span style='color:#111;'> 1.09KB </span>","children":null,"spread":false}],"spread":true},{"title":"test","children":[{"title":"SRGAN_x4.json <span style='color:#111;'> 1.30KB </span>","children":null,"spread":false},{"title":"SRResNet_x4.json <span style='color:#111;'> 1.30KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"README.md <span style='color:#111;'> 4.49KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"bicubic_down_dataset.py <span style='color:#111;'> 1.43KB </span>","children":null,"spread":false},{"title":"util.py <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"datasets.py <span style='color:#111;'> 427B </span>","children":null,"spread":false},{"title":"transforms.py <span style='color:#111;'> 2.76KB </span>","children":null,"spread":false},{"title":"data_loader.py <span style='color:#111;'> 716B </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]