MultiModalSA:CMU-MOSEI的多模态情感分析架构-源码

上传者: 42114645 | 上传时间: 2021-09-09 21:37:29 | 文件大小: 2.86MB | 文件类型: ZIP
多模态 CMU-MOSEI的多模态情感分析体系结构。 描述 该信息库包含四种多模式体系结构以及用于CMU-MOSEI的情感分析的相关培训和测试功能。 在数据文件夹中,提供了转录和标签,以用于的标准培训,验证和测试语句。 可以通过以下链接下载BERT嵌入(文本模式),COVAREP功能(音频模式)和FACET功能(视频模式): BERT嵌入: ://drive.google.com/file/d/13y2xoO1YlDrJ4Be2X6kjtMzfRBs7tBRg/view?usp COVAREP: ://drive.google.com/file/d/1XpRN8xoEMKxubBHaNyEivgRbnVY2iazu/view usp sharing 脸部表情: ://drive.google.com/file/d/1BSjMfKm7FQM8n3HHG5Gn9-dTifULC

文件下载

资源详情

[{"title":"( 36 个子文件 2.86MB ) MultiModalSA:CMU-MOSEI的多模态情感分析架构-源码","children":[{"title":"MultiModalSA-master","children":[{"title":"Hyperparameters.json <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"readme.md <span style='color:#111;'> 188B </span>","children":null,"spread":false},{"title":"BERT_embeddings_extractor.py <span style='color:#111;'> 34.04KB </span>","children":null,"spread":false}],"spread":true},{"title":"datasets.py <span style='color:#111;'> 3.99KB </span>","children":null,"spread":false},{"title":"early_fusion","children":[{"title":"Hyperparameters.json <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"saved_model","children":[{"title":"best_model.bin <span style='color:#111;'> 119.53KB </span>","children":null,"spread":false},{"title":"readme.md <span style='color:#111;'> 1B </span>","children":null,"spread":false}],"spread":true},{"title":"outputs","children":[{"title":"readme.md <span style='color:#111;'> 1B </span>","children":null,"spread":false}],"spread":true},{"title":"readme.md <span style='color:#111;'> 461B </span>","children":null,"spread":false},{"title":"checkpoint","children":[{"title":"readme.md <span style='color:#111;'> 1B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"run_test.py <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false},{"title":"run.py <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false},{"title":"models.py <span style='color:#111;'> 32.16KB </span>","children":null,"spread":false},{"title":"Test.py <span style='color:#111;'> 27.18KB </span>","children":null,"spread":false},{"title":"Prepare_workspace.py <span style='color:#111;'> 1.75KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 5.45KB </span>","children":null,"spread":false},{"title":"late_fusion","children":[{"title":"Hyperparameters.json <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"saved_model","children":[{"title":"best_model.bin <span style='color:#111;'> 254.09KB </span>","children":null,"spread":false},{"title":"readme.md <span style='color:#111;'> 1B </span>","children":null,"spread":false}],"spread":true},{"title":"outputs","children":[{"title":"readme.md <span style='color:#111;'> 1B </span>","children":null,"spread":false}],"spread":false},{"title":"readme.md <span style='color:#111;'> 458B </span>","children":null,"spread":false},{"title":"checkpoint","children":[{"title":"readme.md <span style='color:#111;'> 1B </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"tensor_fusion","children":[{"title":"saved_model","children":[{"title":"readme.md <span style='color:#111;'> 1B </span>","children":null,"spread":false}],"spread":true},{"title":"outputs","children":[{"title":"readme.md <span style='color:#111;'> 1B </span>","children":null,"spread":false}],"spread":false},{"title":"checkpoint","children":[{"title":"readme.md <span style='color:#111;'> 1B </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"data","children":[{"title":"df_MOSEI.tsv <span style='color:#111;'> 2.68MB </span>","children":null,"spread":false},{"title":"readme.md <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"df_test_MOSEI.tsv <span style='color:#111;'> 793.41KB </span>","children":null,"spread":false},{"title":"df_valid_MOSEI.tsv <span style='color:#111;'> 323.95KB </span>","children":null,"spread":false}],"spread":true},{"title":"attention-based","children":[{"title":"Hyperparameters.json <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"saved_model","children":[{"title":"best_model.bin <span style='color:#111;'> 1.42MB </span>","children":null,"spread":false},{"title":"readme.md <span style='color:#111;'> 1B </span>","children":null,"spread":false}],"spread":false},{"title":"outputs","children":[{"title":"readme.md <span style='color:#111;'> 1B </span>","children":null,"spread":false}],"spread":false},{"title":"readme.md <span style='color:#111;'> 470B </span>","children":null,"spread":false},{"title":"checkpoint","children":[{"title":"readme.md <span style='color:#111;'> 1B </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"Train.py <span style='color:#111;'> 36.41KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明