denoising:这是用于多光子显微镜图像降噪的几种有监督和无监督方法的实现,包括CARE,DnCNN,ResNet,Noise2Noise,Noise2Void,概率Noise2Void和结构化Noise2Void-源码

上传者: 42113754 | 上传时间: 2021-05-08 14:34:35 | 文件大小: 83.65MB | 文件类型: ZIP
深度学习的多光子显微镜图像降噪 多光子显微镜(MPM)图像固有地以低信噪比(SNR)捕获,从而抑制了对更深的大脑层成像的过程,实现了更高的时间和空间分辨率。 虽然基于线性滤波的经典方法无法处理MPM图像中占主导地位的泊松噪声,但深度学习图像恢复目前是一个热门话题。 在这项工作中,在MPM图像的去噪性能方面,比较了三种监督(CARE,DnCNN和ResNet)和三种非监督(Noise2Noise,Noise2Void和概率性Noise2Void)深度学习方法,并研究了监督与非监督方法之间的差距。 通过在训练数据中添加具有不同噪声水平的图像,我们的模型可以推广到盲噪声图像。 无偏神经网络也检查了泛化能力。 结果表明,我们的基于深度学习的模型实现了令人满意的降噪性能,并在广泛的噪声水平范围内进行了归纳。 还证明了与监督方法相比,无监督方法仅表现出稍微降低的降噪性能。 该发现具有重要意义,因为收集

文件下载

资源详情

[{"title":"( 56 个子文件 83.65MB ) denoising:这是用于多光子显微镜图像降噪的几种有监督和无监督方法的实现,包括CARE,DnCNN,ResNet,Noise2Noise,Noise2Void,概率Noise2Void和结构化Noise2Void-源码","children":[{"title":"denoising-main","children":[{"title":"training","children":[{"title":"train_n2v.py <span style='color:#111;'> 2.46KB </span>","children":null,"spread":false},{"title":"preprocessing.py <span style='color:#111;'> 7.24KB </span>","children":null,"spread":false},{"title":"train_care.py <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"train_pn2v.py <span style='color:#111;'> 2.15KB </span>","children":null,"spread":false},{"title":"train_unet.py <span style='color:#111;'> 2.83KB </span>","children":null,"spread":false},{"title":"train_dncnn.py <span style='color:#111;'> 2.82KB </span>","children":null,"spread":false},{"title":"train_n2n.py <span style='color:#111;'> 1.77KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"train_dncnn.cpython-37.pyc <span style='color:#111;'> 2.16KB </span>","children":null,"spread":false},{"title":"__init__.cpython-38.pyc <span style='color:#111;'> 136B </span>","children":null,"spread":false},{"title":"__init__.cpython-37.pyc <span style='color:#111;'> 132B </span>","children":null,"spread":false},{"title":"preprocessing.cpython-37.pyc <span style='color:#111;'> 4.82KB </span>","children":null,"spread":false},{"title":"train_resnet.cpython-37.pyc <span style='color:#111;'> 2.13KB </span>","children":null,"spread":false},{"title":"train_n2v.cpython-37.pyc <span style='color:#111;'> 2.21KB </span>","children":null,"spread":false},{"title":"train_n2n.cpython-37.pyc <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false},{"title":"train_care.cpython-37.pyc <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false},{"title":"train_pn2v.cpython-37.pyc <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false},{"title":"train_unet.cpython-37.pyc <span style='color:#111;'> 2.18KB </span>","children":null,"spread":false},{"title":"train_care.cpython-38.pyc <span style='color:#111;'> 1.36KB </span>","children":null,"spread":false}],"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"train_resnet.py <span style='color:#111;'> 2.78KB </span>","children":null,"spread":false}],"spread":true},{"title":"predict.py <span style='color:#111;'> 4.91KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 8.81KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 4.82KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 196B </span>","children":null,"spread":false},{"title":".idea","children":[{"title":"workspace.xml <span style='color:#111;'> 2.64KB </span>","children":null,"spread":false},{"title":"denoising.iml <span style='color:#111;'> 488B </span>","children":null,"spread":false},{"title":"vcs.xml <span style='color:#111;'> 180B </span>","children":null,"spread":false},{"title":"misc.xml <span style='color:#111;'> 199B </span>","children":null,"spread":false},{"title":"modules.xml <span style='color:#111;'> 270B </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"ratiometric.py <span style='color:#111;'> 5.44KB </span>","children":null,"spread":false},{"title":"nets","children":[{"title":"unet","children":[{"title":"model.py <span style='color:#111;'> 8.00KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"__init__.cpython-37.pyc <span style='color:#111;'> 133B </span>","children":null,"spread":false},{"title":"model.cpython-37.pyc <span style='color:#111;'> 6.61KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"resnet.py <span style='color:#111;'> 1007B </span>","children":null,"spread":false},{"title":"pn2v","children":[{"title":"histNoiseModel.py <span style='color:#111;'> 4.53KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 1011B </span>","children":null,"spread":false},{"title":"prediction.py <span style='color:#111;'> 8.48KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"training.cpython-37.pyc <span style='color:#111;'> 11.17KB </span>","children":null,"spread":false},{"title":"__init__.cpython-37.pyc <span style='color:#111;'> 133B </span>","children":null,"spread":false},{"title":"utils.cpython-37.pyc <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false},{"title":"histNoiseModel.cpython-37.pyc <span style='color:#111;'> 4.17KB </span>","children":null,"spread":false}],"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"training.py <span style='color:#111;'> 14.98KB </span>","children":null,"spread":false}],"spread":true},{"title":"custom_unet.py <span style='color:#111;'> 3.06KB </span>","children":null,"spread":false},{"title":"dncnn.py <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"custom_unet.cpython-37.pyc <span style='color:#111;'> 2.17KB </span>","children":null,"spread":false},{"title":"__init__.cpython-37.pyc <span style='color:#111;'> 128B </span>","children":null,"spread":false},{"title":"resnet.cpython-37.pyc <span style='color:#111;'> 860B </span>","children":null,"spread":false},{"title":"dncnn.cpython-37.pyc <span style='color:#111;'> 1.10KB </span>","children":null,"spread":false}],"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"AST_039_Spock_870nm_ch1_16x_Z6_FLIIP.tif <span style='color:#111;'> 50.01MB </span>","children":null,"spread":false},{"title":"AST_013_Spock_870nm_ch1_16x_Z8_FLIIP.tif <span style='color:#111;'> 50.01MB </span>","children":null,"spread":false}],"spread":true},{"title":"predict.ipynb <span style='color:#111;'> 587.21KB </span>","children":null,"spread":false},{"title":"ratiometric.ipynb <span style='color:#111;'> 257.63KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明