TabularSemanticParsing:将自然语言问题转换为结构化查询语言

上传者: 42113754 | 上传时间: 2023-01-17 11:55:27 | 文件大小: 1.09MB | 文件类型: ZIP
桥接文本和表格数据以进行跨域文本到SQL的语义解析 这是以下论文的官方代码版本: Xi Victoria Lin,Richard Socher和Caiming Xiong。 。 EMNLP 2020的发现。 概述 跨域表格语义解析(X-TSP)是在给某个数据库发出自然语言问题的情况下预测可执行结构化查询语言的任务。 在训练期间,该模型可能会或可能不会看到目标数据库。 该库实现 一个强大的基于序列到序列的跨域文本到SQL语义解析器,在两个广泛使用的基准数据集: 和上实现了最先进的性能。 从改编而来的一组用于解析,标记化和验证SQL查询的。 通过修改正式的语言预处理和后处理模块,可以使解析器适合于学习从文本到其他结构化查询语言(例如的映射。 模型 我们的模型将自然语言话语和数据库(模式+字段选择列表)作为输入,并生成SQL查询作为标记序列。 我们应用模式指导的解码和后处理,以确保最终

文件下载

资源详情

[{"title":"( 98 个子文件 1.09MB ) TabularSemanticParsing:将自然语言问题转换为结构化查询语言","children":[{"title":"TabularSemanticParsing-main","children":[{"title":".gitignore <span style='color:#111;'> 1.25KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 253B </span>","children":null,"spread":false},{"title":"data","children":[{"title":"spider","children":[{"title":"scripts","children":[{"title":"amend_missing_foreign_keys.py <span style='color:#111;'> 3.60KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true},{"title":"src","children":[{"title":"submission_ensemble.py <span style='color:#111;'> 3.60KB </span>","children":null,"spread":false},{"title":"parse_args.py <span style='color:#111;'> 21.08KB </span>","children":null,"spread":false},{"title":"trans_checker","children":[{"title":"args.py <span style='color:#111;'> 4.79KB </span>","children":null,"spread":false},{"title":"trans_checker.py <span style='color:#111;'> 16.12KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.92KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 221B </span>","children":null,"spread":false},{"title":"submit_to_gcp.py <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false},{"title":"semantic_parser","children":[{"title":"ensemble.py <span style='color:#111;'> 18.42KB </span>","children":null,"spread":false},{"title":"ensemble_configs.py <span style='color:#111;'> 5.77KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 221B </span>","children":null,"spread":false},{"title":"seq2seq_ptr.py <span style='color:#111;'> 9.63KB </span>","children":null,"spread":false},{"title":"bridge.py <span style='color:#111;'> 21.40KB </span>","children":null,"spread":false},{"title":"decoding_algorithms.py <span style='color:#111;'> 16.93KB </span>","children":null,"spread":false},{"title":"encoder_decoder.py <span style='color:#111;'> 3.68KB </span>","children":null,"spread":false},{"title":"seq2seq.py <span style='color:#111;'> 8.55KB </span>","children":null,"spread":false},{"title":"decoder.py <span style='color:#111;'> 1.26KB </span>","children":null,"spread":false},{"title":"learn_framework.py <span style='color:#111;'> 33.16KB </span>","children":null,"spread":false}],"spread":true},{"title":"submission.py <span style='color:#111;'> 3.42KB </span>","children":null,"spread":false},{"title":"data_processor","children":[{"title":"vocab_processor.py <span style='color:#111;'> 5.22KB </span>","children":null,"spread":false},{"title":"vectorizers.py <span style='color:#111;'> 6.47KB </span>","children":null,"spread":false},{"title":"data_processor.py <span style='color:#111;'> 7.25KB </span>","children":null,"spread":false},{"title":"tokenizers.py <span style='color:#111;'> 20.03KB </span>","children":null,"spread":false},{"title":"sql","children":[{"title":"__init__.py <span style='color:#111;'> 221B </span>","children":null,"spread":false},{"title":"sql_reserved_tokens.py <span style='color:#111;'> 9.21KB </span>","children":null,"spread":false},{"title":"sql_operators.py <span style='color:#111;'> 3.35KB </span>","children":null,"spread":false}],"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"processors","children":[{"title":"data_processor_spider.py <span style='color:#111;'> 15.80KB </span>","children":null,"spread":false},{"title":"data_processor_wikisql.py <span style='color:#111;'> 11.94KB </span>","children":null,"spread":false}],"spread":false},{"title":"data_loader.py <span style='color:#111;'> 13.77KB </span>","children":null,"spread":false},{"title":"revtok_tokenizer.py <span style='color:#111;'> 2.12KB </span>","children":null,"spread":false},{"title":"data_stats.py <span style='color:#111;'> 3.06KB </span>","children":null,"spread":false},{"title":"path_utils.py <span style='color:#111;'> 12.62KB </span>","children":null,"spread":false},{"title":"schema_graph.py <span style='color:#111;'> 43.88KB </span>","children":null,"spread":false},{"title":"schema_loader.py <span style='color:#111;'> 8.78KB </span>","children":null,"spread":false},{"title":"vocab_utils.py <span style='color:#111;'> 8.32KB </span>","children":null,"spread":false},{"title":"data_augmentation.py <span style='color:#111;'> 4.92KB </span>","children":null,"spread":false},{"title":"processor_utils.py <span style='color:#111;'> 20.92KB </span>","children":null,"spread":false}],"spread":false},{"title":"utils","children":[{"title":"__init__.py <span style='color:#111;'> 221B </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 9.53KB </span>","children":null,"spread":false},{"title":"trans","children":[{"title":"bert_utils.py <span style='color:#111;'> 2.24KB </span>","children":null,"spread":false},{"title":"roberta_utils.py <span style='color:#111;'> 3.54KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 221B </span>","children":null,"spread":false},{"title":"table_bert_utils.py <span style='color:#111;'> 1.81KB </span>","children":null,"spread":false},{"title":"bert_cased_utils.py <span style='color:#111;'> 2.22KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"common","children":[{"title":"nn_visualizer.py <span style='color:#111;'> 1.23KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"nn_modules.py <span style='color:#111;'> 28.92KB </span>","children":null,"spread":false},{"title":"lr_scheduler.py <span style='color:#111;'> 21.35KB </span>","children":null,"spread":false},{"title":"ops.py <span style='color:#111;'> 15.53KB </span>","children":null,"spread":false},{"title":"show_vis.ipynb <span style='color:#111;'> 1.39MB </span>","children":null,"spread":false},{"title":"content_encoder.py <span style='color:#111;'> 4.81KB </span>","children":null,"spread":false},{"title":"learn_framework.py <span style='color:#111;'> 21.89KB </span>","children":null,"spread":false}],"spread":true},{"title":"eval","children":[{"title":"eval_constant_extraction.py <span style='color:#111;'> 1.83KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 221B </span>","children":null,"spread":false},{"title":"eval_tools.py <span style='color:#111;'> 13.82KB </span>","children":null,"spread":false},{"title":"eval_utils.py <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false},{"title":"eval_table_prediction.py <span style='color:#111;'> 1.35KB </span>","children":null,"spread":false},{"title":"wikisql","children":[{"title":"__init__.py <span style='color:#111;'> 221B </span>","children":null,"spread":false},{"title":"lib","children":[{"title":"dbengine.py <span style='color:#111;'> 2.25KB </span>","children":null,"spread":false},{"title":"table.py <span style='color:#111;'> 6.12KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 221B </span>","children":null,"spread":false},{"title":"common.py <span style='color:#111;'> 476B </span>","children":null,"spread":false},{"title":"query.py <span style='color:#111;'> 9.76KB </span>","children":null,"spread":false}],"spread":false},{"title":"evaluate.py <span style='color:#111;'> 3.17KB </span>","children":null,"spread":false}],"spread":false},{"title":"spider","children":[{"title":"process_sql.py <span style='color:#111;'> 18.68KB </span>","children":null,"spread":false},{"title":"evaluate.py <span style='color:#111;'> 33.53KB </span>","children":null,"spread":false},{"title":"syntaxsql.py <span style='color:#111;'> 15.20KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"demos","children":[{"title":"__init__.py <span style='color:#111;'> 221B </span>","children":null,"spread":false},{"title":"demos.py <span style='color:#111;'> 7.86KB </span>","children":null,"spread":false},{"title":"demo_args.py <span style='color:#111;'> 1016B </span>","children":null,"spread":false}],"spread":false},{"title":"experiments.py <span style='color:#111;'> 16.11KB </span>","children":null,"spread":false}],"spread":false},{"title":"SECURITY.md <span style='color:#111;'> 401B </span>","children":null,"spread":false},{"title":"moz_sp","children":[{"title":"sql_tokenizer.py <span style='color:#111;'> 17.00KB </span>","children":null,"spread":false},{"title":"sql_execution_order_parser.py <span style='color:#111;'> 14.03KB </span>","children":null,"spread":false},{"title":"traverser.py <span style='color:#111;'> 8.40KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 10.65KB </span>","children":null,"spread":false},{"title":"extractors","children":[{"title":"value_extractor.py <span style='color:#111;'> 7.06KB </span>","children":null,"spread":false},{"title":"foreign_key_extractor.py <span style='color:#111;'> 7.44KB </span>","children":null,"spread":false},{"title":"table_extractor.py <span style='color:#111;'> 2.56KB </span>","children":null,"spread":false}],"spread":true},{"title":"formatting.py <span style='color:#111;'> 12.59KB </span>","children":null,"spread":false},{"title":"schema_consistency_checker.py <span style='color:#111;'> 13.02KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 259B </span>","children":null,"spread":false},{"title":"tests","children":[{"title":"unit_tests.py <span style='color:#111;'> 23.88KB </span>","children":null,"spread":false},{"title":"tests.py <span style='color:#111;'> 12.82KB </span>","children":null,"spread":false}],"spread":false},{"title":"sql_normalizer.py <span style='color:#111;'> 11.31KB </span>","children":null,"spread":false},{"title":"sql_parser.py <span style='color:#111;'> 13.92KB </span>","children":null,"spread":false},{"title":"debugs.py <span style='color:#111;'> 742B </span>","children":null,"spread":false},{"title":"keywords.py <span style='color:#111;'> 2.34KB </span>","children":null,"spread":false}],"spread":false},{"title":"CODE_OF_CONDUCT.md <span style='color:#111;'> 5.04KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.49KB </span>","children":null,"spread":false},{"title":"experiment-bridge.sh <span style='color:#111;'> 6.75KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 8.25KB </span>","children":null,"spread":false},{"title":"configs","children":[{"title":"bridge","children":[{"title":"wikisql-bridge-bert-large.sh <span style='color:#111;'> 1.88KB </span>","children":null,"spread":false},{"title":"spider-bridge-bert-large.sh <span style='color:#111;'> 1.88KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明