onnx_tflite_yolov3:转换工具,可将YOLO v3暗网权重转换为TF Lite模型(YOLO v3 PyTorch> ONNX> TensorFlow> TF Lite)和TensorRT(YOLO v3 Pytorch> ONNX> TensorRT)-源码

上传者: 42113380 | 上传时间: 2021-08-19 21:52:15 | 文件大小: 1.52MB | 文件类型: ZIP
介绍 一种转换工具,可将YOLO v3暗网权重转换为TF Lite模型(YOLO v3 PyTorch> ONNX> TensorFlow> TF Lite)和TensorRT模型(dynamic_axes分支)。 先决条件 python3 torch==1.3.1 torchvision==0.4.2 onnx==1.6.0 onnx-tf==1.5.0 onnxruntime-gpu==1.0.0 tensorflow-gpu==1.15.0 码头工人 docker pull zldrobit/onnx:10.0-cudnn7-devel 用法 1.下载预训练的Darknet权重: cd weights wget https://pjreddie.com/media/files/yolov3.weights 2.将YOLO v3模型从Darknet权重转换为ONNX模

文件下载

资源详情

[{"title":"( 61 个子文件 1.52MB ) onnx_tflite_yolov3:转换工具,可将YOLO v3暗网权重转换为TF Lite模型(YOLO v3 PyTorch> ONNX> TensorFlow> TF Lite)和TensorRT(YOLO v3 Pytorch> ONNX> TensorRT)-源码","children":[{"title":"onnx_tflite_yolov3-master","children":[{"title":"cfg","children":[{"title":"yolov3-tiny-3cls.cfg <span style='color:#111;'> 1.87KB </span>","children":null,"spread":false},{"title":"yolov3-tiny-1cls.cfg <span style='color:#111;'> 1.87KB </span>","children":null,"spread":false},{"title":"yolov3-spp-3cls.cfg <span style='color:#111;'> 8.39KB </span>","children":null,"spread":false},{"title":"yolov3-spp-pan-scale.cfg <span style='color:#111;'> 10.29KB </span>","children":null,"spread":false},{"title":"yolov3-spp.cfg <span style='color:#111;'> 8.40KB </span>","children":null,"spread":false},{"title":"csresnext50-panet-spp.cfg <span style='color:#111;'> 10.37KB </span>","children":null,"spread":false},{"title":"yolov3s.cfg <span style='color:#111;'> 8.40KB </span>","children":null,"spread":false},{"title":"yolov3-spp3.cfg <span style='color:#111;'> 8.75KB </span>","children":null,"spread":false},{"title":"yolov3-spp-1cls.cfg <span style='color:#111;'> 8.39KB </span>","children":null,"spread":false},{"title":"yolov3.cfg <span style='color:#111;'> 8.14KB </span>","children":null,"spread":false},{"title":"yolov3-1cls.cfg <span style='color:#111;'> 8.14KB </span>","children":null,"spread":false},{"title":"yolov3-spp-matrix.cfg <span style='color:#111;'> 13.11KB </span>","children":null,"spread":false},{"title":"yolov3-tiny.cfg <span style='color:#111;'> 1.87KB </span>","children":null,"spread":false}],"spread":false},{"title":"fix_reshape.py <span style='color:#111;'> 299B </span>","children":null,"spread":false},{"title":"tflite_debug.py <span style='color:#111;'> 1.14KB </span>","children":null,"spread":false},{"title":"onnx_infer.py <span style='color:#111;'> 527B </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 23.35KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"utils.py <span style='color:#111;'> 39.10KB </span>","children":null,"spread":false},{"title":"datasets.py <span style='color:#111;'> 33.33KB </span>","children":null,"spread":false},{"title":"parse_config.py <span style='color:#111;'> 2.34KB </span>","children":null,"spread":false},{"title":"gcp.sh <span style='color:#111;'> 10.21KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"google_utils.py <span style='color:#111;'> 2.52KB </span>","children":null,"spread":false},{"title":"adabound.py <span style='color:#111;'> 11.08KB </span>","children":null,"spread":false},{"title":"torch_utils.py <span style='color:#111;'> 6.49KB </span>","children":null,"spread":false}],"spread":true},{"title":".github","children":[{"title":"ISSUE_TEMPLATE","children":[{"title":"--bug-report.md <span style='color:#111;'> 702B </span>","children":null,"spread":false},{"title":"--feature-request.md <span style='color:#111;'> 742B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"onnx_detect.py <span style='color:#111;'> 6.59KB </span>","children":null,"spread":false},{"title":"test.py <span style='color:#111;'> 9.01KB </span>","children":null,"spread":false},{"title":"detect.py <span style='color:#111;'> 7.04KB </span>","children":null,"spread":false},{"title":"prep.py <span style='color:#111;'> 5.93KB </span>","children":null,"spread":false},{"title":"tflite_detect.py <span style='color:#111;'> 8.41KB </span>","children":null,"spread":false},{"title":"tf_detect.py <span style='color:#111;'> 8.14KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 790B </span>","children":null,"spread":false},{"title":"weights","children":[{"title":"download_yolov3_weights.sh <span style='color:#111;'> 896B </span>","children":null,"spread":false}],"spread":false},{"title":"models.py <span style='color:#111;'> 19.22KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 34.30KB </span>","children":null,"spread":false},{"title":"tf_infer.py <span style='color:#111;'> 763B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 3.62KB </span>","children":null,"spread":false},{"title":"tflite_infer.py <span style='color:#111;'> 1.26KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"coco.data <span style='color:#111;'> 110B </span>","children":null,"spread":false},{"title":"coco_64img.txt <span style='color:#111;'> 3.56KB </span>","children":null,"spread":false},{"title":"5k.shapes <span style='color:#111;'> 39.06KB </span>","children":null,"spread":false},{"title":"coco_1img.data <span style='color:#111;'> 112B </span>","children":null,"spread":false},{"title":"coco_16img.data <span style='color:#111;'> 114B </span>","children":null,"spread":false},{"title":"coco_1cls.data <span style='color:#111;'> 111B </span>","children":null,"spread":false},{"title":"coco_1img.txt <span style='color:#111;'> 53B </span>","children":null,"spread":false},{"title":"coco_1cls.txt <span style='color:#111;'> 265B </span>","children":null,"spread":false},{"title":"coco_16img.txt <span style='color:#111;'> 912B </span>","children":null,"spread":false},{"title":"samples","children":[{"title":"bus.jpg <span style='color:#111;'> 476.01KB </span>","children":null,"spread":false},{"title":"zidane.jpg <span style='color:#111;'> 164.99KB </span>","children":null,"spread":false}],"spread":false},{"title":"trainvalno5k.shapes <span style='color:#111;'> 916.11KB </span>","children":null,"spread":false},{"title":"coco_64img.data <span style='color:#111;'> 114B </span>","children":null,"spread":false},{"title":"coco.names <span style='color:#111;'> 621B </span>","children":null,"spread":false},{"title":"get_coco_dataset_gdrive.sh <span style='color:#111;'> 575B </span>","children":null,"spread":false},{"title":"5k.txt <span style='color:#111;'> 258.79KB </span>","children":null,"spread":false},{"title":"get_coco_dataset.sh <span style='color:#111;'> 1.63KB </span>","children":null,"spread":false},{"title":"coco_paper.names <span style='color:#111;'> 702B </span>","children":null,"spread":false}],"spread":false},{"title":".gitignore <span style='color:#111;'> 3.71KB </span>","children":null,"spread":false},{"title":"onnx2tf.py <span style='color:#111;'> 379B </span>","children":null,"spread":false},{"title":"examples.ipynb <span style='color:#111;'> 859.74KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明