Captum:使用Captum探索PyTorch模型的可解释性-源码

上传者: 42110533 | 上传时间: 2022-02-11 14:10:09 | 文件大小: 1.15MB | 文件类型: -
资本 使用Captum探索PyTorch模型的可解释性 Captum可帮助ML研究人员更轻松地实现可与PyTorch模型进行交互的可解释性算法。对于模型开发人员而言,Captum可用于通过识别有助于模型输出的不同特征来改进模型和对模型进行故障排除,从而设计出更好的模型并进行故障排除意外的模型输出。( ) 在这里,我们将解释Resnet模型对图像的预测,并使用归因技术(例如Captum提供的“集成梯度”和“遮挡”)来比较结果。 方案1-通过PyTorch模型进行正确的预测 在这里,输入图像是企鹅,模型预测是预期的“企鹅王”。 归因输出:综合梯度-

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明