quantum_computation:用于实现和实验量子算法的代码-源码

上传者: 42110469 | 上传时间: 2021-09-30 07:53:04 | 文件大小: 6.69MB | 文件类型: ZIP
量子计算 我将在此存储库中实现各种量子算法。 该存储库使用Cirq和Tensorflow Quantum。 如果有时间,我将在其中的每一个上制作视频,当我这样做时,链接将在此处: 实施算法 TensorFlow-Quantum(TFQ)和Cirq 用于不同TFQ实验的代码。 包括原始代码和教程(以及从pennylane到tfq的翻译教程)。 有关以下内容的视频讨论: : 目前包括: 单Qubit分类器 用QML解决XOR 复制“用量子变分电路进行强化学习” TFQ中的量子近似优化算法(QAOA) TFQ中的变分量子本征求解器(VQE):包括1个和2个量子位哈密顿量和的复制 用于TFQ中VQE的Rotosolve优化器:来自 VQE用于Cirq中的任意多个量子位 自定义ParameterShift和Adam优化与TFQ的比较 潘妮兰 Pennylane实验的代码(主要来自黑客

文件下载

资源详情

[{"title":"( 51 个子文件 6.69MB ) quantum_computation:用于实现和实验量子算法的代码-源码","children":[{"title":"quantum_computation-master","children":[{"title":"TFQ","children":[{"title":"RL_QVC","children":[{"title":"cartpole.png <span style='color:#111;'> 44.46KB </span>","children":null,"spread":false},{"title":"qdqn_paper.py <span style='color:#111;'> 6.78KB </span>","children":null,"spread":false}],"spread":true},{"title":"QAOA","children":[{"title":"qaoa_nm.py <span style='color:#111;'> 3.11KB </span>","children":null,"spread":false},{"title":"qaoa.py <span style='color:#111;'> 3.07KB </span>","children":null,"spread":false}],"spread":true},{"title":"VQE","children":[{"title":"vqe_tfq_arbitraryy_qubits.py <span style='color:#111;'> 4.29KB </span>","children":null,"spread":false},{"title":"vqe_single.py <span style='color:#111;'> 2.12KB </span>","children":null,"spread":false},{"title":"vqe_pauli_multi.py <span style='color:#111;'> 1.37KB </span>","children":null,"spread":false},{"title":"rotos.py <span style='color:#111;'> 702B </span>","children":null,"spread":false},{"title":"vqe_optimizers.py <span style='color:#111;'> 5.12KB </span>","children":null,"spread":false},{"title":"ssvqe_tfq.py <span style='color:#111;'> 5.88KB </span>","children":null,"spread":false},{"title":"vqe_cirq.py <span style='color:#111;'> 3.41KB </span>","children":null,"spread":false},{"title":"vqe_multi.py <span style='color:#111;'> 3.47KB </span>","children":null,"spread":false},{"title":"vqe_single_readout.py <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false}],"spread":true},{"title":"XOR","children":[{"title":"XOR_db.py <span style='color:#111;'> 4.32KB </span>","children":null,"spread":false},{"title":"decision_boundary_quantum.png <span style='color:#111;'> 33.36KB </span>","children":null,"spread":false},{"title":"xor_qvc.py <span style='color:#111;'> 3.55KB </span>","children":null,"spread":false},{"title":"XOR_acc.png <span style='color:#111;'> 26.65KB </span>","children":null,"spread":false},{"title":"XOR_loss.png <span style='color:#111;'> 38.30KB </span>","children":null,"spread":false}],"spread":true},{"title":"Custom","children":[{"title":"xor_custom_ps.py <span style='color:#111;'> 4.56KB </span>","children":null,"spread":false},{"title":"quantum_diffs.py <span style='color:#111;'> 407B </span>","children":null,"spread":false},{"title":"optimizers.py <span style='color:#111;'> 1.61KB </span>","children":null,"spread":false},{"title":"quantum_binary_custom_ps.py <span style='color:#111;'> 3.61KB </span>","children":null,"spread":false}],"spread":true},{"title":"Qubit_Classifier","children":[{"title":"single_qubit_classifier.py <span style='color:#111;'> 2.58KB </span>","children":null,"spread":false},{"title":"single_qubit_classification_loss.png <span style='color:#111;'> 27.40KB </span>","children":null,"spread":false},{"title":"single_qubit_classification_acc.png <span style='color:#111;'> 22.19KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"Pennylane","children":[{"title":"simple_circuit_50.py <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false},{"title":"vqe_500_template.py <span style='color:#111;'> 5.40KB </span>","children":null,"spread":false},{"title":"vqe_100_template.py <span style='color:#111;'> 5.50KB </span>","children":null,"spread":false},{"title":"circuit_training_200_template.py <span style='color:#111;'> 2.29KB </span>","children":null,"spread":false},{"title":"vqe_200_template.py <span style='color:#111;'> 4.81KB </span>","children":null,"spread":false},{"title":"quantum_gradients_200_template.py <span style='color:#111;'> 3.17KB </span>","children":null,"spread":false},{"title":"circuit_training_100_template.py <span style='color:#111;'> 2.84KB </span>","children":null,"spread":false},{"title":"quantum_gradients_100_template.py <span style='color:#111;'> 1.96KB </span>","children":null,"spread":false},{"title":"simple_circuits_20.py <span style='color:#111;'> 1.32KB </span>","children":null,"spread":false},{"title":"simple_circuit_30.py <span style='color:#111;'> 1.34KB </span>","children":null,"spread":false},{"title":"quantum_gradients_500_template.py <span style='color:#111;'> 4.36KB </span>","children":null,"spread":false},{"title":"circuit_training_500_template.py <span style='color:#111;'> 5.21KB </span>","children":null,"spread":false}],"spread":false},{"title":"research","children":[{"title":"q_reinforce.py <span style='color:#111;'> 7.69KB </span>","children":null,"spread":false},{"title":"q_a2c.py <span style='color:#111;'> 8.67KB </span>","children":null,"spread":false},{"title":"arbitrary.py <span style='color:#111;'> 4.06KB </span>","children":null,"spread":false}],"spread":true},{"title":"deutsch_jozsa","children":[{"title":"quantum_d_j.py <span style='color:#111;'> 1.55KB </span>","children":null,"spread":false},{"title":"classical_d_j.py <span style='color:#111;'> 929B </span>","children":null,"spread":false}],"spread":true},{"title":"AI and Society Talk.pptx <span style='color:#111;'> 6.66MB </span>","children":null,"spread":false},{"title":"teleportation","children":[{"title":"quantum_teleport.py <span style='color:#111;'> 1.62KB </span>","children":null,"spread":false}],"spread":true},{"title":"variational_quantum_rl","children":[{"title":"frozen_lake_quantum_rl.py <span style='color:#111;'> 5.70KB </span>","children":null,"spread":false}],"spread":true},{"title":"simons","children":[{"title":"simons_classical.py <span style='color:#111;'> 1.77KB </span>","children":null,"spread":false},{"title":"simons_quantum.py <span style='color:#111;'> 1.01KB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 5.77KB </span>","children":null,"spread":false},{"title":"grovers","children":[{"title":"quantum_grover.py <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"classical_grovers.py <span style='color:#111;'> 483B </span>","children":null,"spread":false}],"spread":true}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明