MachineLearning_Pratice:机器学习算法案例实战,python实现

上传者: 42106765 | 上传时间: 2022-10-15 15:41:57 | 文件大小: 2.76MB | 文件类型: ZIP
机器学习算法案例实战(python实现) 一。 1.加载数据 用熊猫加载 2.数据探索性分析及可视化 用matplotlib和seaborn对数据的标注(结果)进行。 3.特征处理 用pandas去除无关特征 用StandardScaler对数据进行标准化 4.模型训练 用train_test_split划分训练集和测试集 选择模型:SVM,决策树,随机森林,KNN 用GridSearchCV优化模型参数 用管道管道机制定制化分类器训练流程 5.模型评估 用对不同模型进行评估, 。 二。 1.加载数据 用熊猫加载数据 数据索引说明: 时间:交易时间; 金额:交易金额; 类别:交易的分类,0表示正常(非欺诈),1表示欺诈V1,V2,……V28:出于利益,不知道这些特征代表的具体含义,只知道这28个特征值是通过PCA变换得到的结果 2.数据探索性分析及可视化 用matplotlib和sea

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明