Awesome-Differential-Privacy:差分私有机器学习-源码

上传者: 42104181 | 上传时间: 2021-07-19 15:18:25 | 文件大小: 17.34MB | 文件类型: ZIP
差分隐私 差分隐私学习与集成 1.直观的解释 2.学术论文 2.1 调查 差分隐私的算法基础 差分隐私和应用 CCS、S&P、NDSS、USENIX、Infocom 中的差异隐私论文 SoK:差异隐私 2.2 课程 差异隐私研讨会,秋季 19/20 CSE 660 秋季 2017 cs295-数据隐私 隐私研究小组 CS 860-私有数据分析算法-2020年秋季 2.3 一些机制 集中差分隐私:简化、扩展和下限 2.4 2015-2019 年 CCS、S&P、NDSS、USENIX、Infocom 中的差异隐私(其中一些来自 2020 年) 民意调查 3. 视频 差分隐私的最新进展 II 差分隐私的最新发展 I 采样隐私放大与人一差分隐私 差分隐私:从理论到实践 4. 代码 4.0 代码实现DP算法 4.1 K-匿名算法 4.2 随机响应 4.3 拉普拉斯和指数机制 4

文件下载

资源详情

[{"title":"( 40 个子文件 17.34MB ) Awesome-Differential-Privacy:差分私有机器学习-源码","children":[{"title":"Awesome-Differential-Privacy-master","children":[{"title":"differential privacy and its application.pdf <span style='color:#111;'> 14.59MB </span>","children":null,"spread":false},{"title":".github","children":[{"title":"FUNDING.yml <span style='color:#111;'> 711B </span>","children":null,"spread":false}],"spread":true},{"title":"paper-survey.md <span style='color:#111;'> 3.81KB </span>","children":null,"spread":false},{"title":"k-anonymization-algo","children":[{"title":"conf","children":[{"title":"age_hierarchy.txt <span style='color:#111;'> 1.84KB </span>","children":null,"spread":false},{"title":"marital_hierarchy.txt <span style='color:#111;'> 280B </span>","children":null,"spread":false},{"title":"race_hierarchy.txt <span style='color:#111;'> 105B </span>","children":null,"spread":false},{"title":"edu_hierarchy.txt <span style='color:#111;'> 912B </span>","children":null,"spread":false}],"spread":true},{"title":"utilis","children":[{"title":"readdata.py <span style='color:#111;'> 7.06KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 1B </span>","children":null,"spread":false}],"spread":true},{"title":"src","children":[{"title":"k_anonymity.py <span style='color:#111;'> 8.87KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"kanonymity_eval.py <span style='color:#111;'> 389B </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 1.85KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"adult_5_kanonymity.data <span style='color:#111;'> 4.09MB </span>","children":null,"spread":false},{"title":"adult.test <span style='color:#111;'> 1.91MB </span>","children":null,"spread":false},{"title":"adult.names <span style='color:#111;'> 5.11KB </span>","children":null,"spread":false},{"title":"adult_50_kanonymity.data <span style='color:#111;'> 3.87MB </span>","children":null,"spread":false},{"title":"adult_10_kanonymity.data <span style='color:#111;'> 4.09MB </span>","children":null,"spread":false},{"title":"adult_100_kanonymity.data <span style='color:#111;'> 3.86MB </span>","children":null,"spread":false},{"title":"old.adult.names <span style='color:#111;'> 4.17KB </span>","children":null,"spread":false},{"title":"adult.data <span style='color:#111;'> 3.79MB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"Laplace&Exponetial","children":[{"title":"conf","children":[{"title":"age_hierarchy.txt <span style='color:#111;'> 1.93KB </span>","children":null,"spread":false},{"title":"marital_hierarchy.txt <span style='color:#111;'> 280B </span>","children":null,"spread":false},{"title":"race_hierarchy.txt <span style='color:#111;'> 105B </span>","children":null,"spread":false},{"title":"edu_hierarchy.txt <span style='color:#111;'> 912B </span>","children":null,"spread":false}],"spread":true},{"title":"utilis","children":[{"title":"readdata.py <span style='color:#111;'> 7.06KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 1B </span>","children":null,"spread":false}],"spread":true},{"title":"src","children":[{"title":"differential_privacy.py <span style='color:#111;'> 4.35KB </span>","children":null,"spread":false},{"title":"laplace_mechanism.py <span style='color:#111;'> 4.12KB </span>","children":null,"spread":false},{"title":"exponential_mechanism.py <span style='color:#111;'> 4.49KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 644B </span>","children":null,"spread":false},{"title":"data","children":[{"title":"adult.test <span style='color:#111;'> 1.91MB </span>","children":null,"spread":false},{"title":"adult.names <span style='color:#111;'> 5.11KB </span>","children":null,"spread":false},{"title":"old.adult.names <span style='color:#111;'> 4.17KB </span>","children":null,"spread":false},{"title":"adult.data <span style='color:#111;'> 3.79MB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 4.40KB </span>","children":null,"spread":false},{"title":"collection_of_papers.md <span style='color:#111;'> 8.96KB </span>","children":null,"spread":false},{"title":"Gaussian","children":[{"title":"README.md <span style='color:#111;'> 409B </span>","children":null,"spread":false},{"title":"agm-example.py <span style='color:#111;'> 2.41KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明