MIT ADE20K数据集上用于语义分割/场景解析的Pytorch实现-Python开发

上传者: 42103587 | 上传时间: 2021-09-10 10:29:32 | 文件大小: 1.47MB | 文件类型: ZIP
PyTorch中MIT ADE20K数据集上的语义分割这是MIT ADE20K场景解析数据集(http://sceneparsing.csail.mit.edu/)上语义分割模型的PyTorch实现。 ADE20K是PyTorch中MIT ADE20K数据集上最大的开源语义分割。这是MIT ADE20K场景解析数据集(http://sceneparsing.csail.mit.edu/)上语义分割模型的PyTorch实现。 ADE20K是由MIT计算机视觉团队发布的最大的用于语义分割和场景解析的开源数据集。 请通过以下链接在Caffe和Torch7上找到我们的数据集和实施的存储库:https://github.com/CSAILVision/sceneparsing如果您只是想玩我们的

文件下载

资源详情

[{"title":"( 65 个子文件 1.47MB ) MIT ADE20K数据集上用于语义分割/场景解析的Pytorch实现-Python开发","children":[{"title":"semantic-segmentation-pytorch-master","children":[{"title":"setup.py <span style='color:#111;'> 817B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 90B </span>","children":null,"spread":false},{"title":"demo_test.sh <span style='color:#111;'> 910B </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 57B </span>","children":null,"spread":false},{"title":"data","children":[{"title":"object150_info.csv <span style='color:#111;'> 5.67KB </span>","children":null,"spread":false},{"title":"training.odgt <span style='color:#111;'> 3.62MB </span>","children":null,"spread":false},{"title":"color150.mat <span style='color:#111;'> 502B </span>","children":null,"spread":false},{"title":"validation.odgt <span style='color:#111;'> 367.19KB </span>","children":null,"spread":false}],"spread":true},{"title":"eval.py <span style='color:#111;'> 5.85KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.49KB </span>","children":null,"spread":false},{"title":"mit_semseg","children":[{"title":"__init__.py <span style='color:#111;'> 63B </span>","children":null,"spread":false},{"title":"models","children":[{"title":"mobilenet.py <span style='color:#111;'> 4.82KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 53B </span>","children":null,"spread":false},{"title":"resnext.py <span style='color:#111;'> 5.24KB </span>","children":null,"spread":false},{"title":"models.py <span style='color:#111;'> 20.69KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 577B </span>","children":null,"spread":false},{"title":"hrnet.py <span style='color:#111;'> 16.42KB </span>","children":null,"spread":false},{"title":"resnet.py <span style='color:#111;'> 6.61KB </span>","children":null,"spread":false}],"spread":true},{"title":"utils.py <span style='color:#111;'> 5.55KB </span>","children":null,"spread":false},{"title":"config","children":[{"title":"__init__.py <span style='color:#111;'> 32B </span>","children":null,"spread":false},{"title":"defaults.py <span style='color:#111;'> 3.18KB </span>","children":null,"spread":false}],"spread":true},{"title":"lib","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"data","children":[{"title":"distributed.py <span style='color:#111;'> 1.92KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 95B </span>","children":null,"spread":false},{"title":"dataloader.py <span style='color:#111;'> 15.83KB </span>","children":null,"spread":false},{"title":"sampler.py <span style='color:#111;'> 3.67KB </span>","children":null,"spread":false},{"title":"dataset.py <span style='color:#111;'> 3.38KB </span>","children":null,"spread":false}],"spread":false},{"title":"__init__.py <span style='color:#111;'> 18B </span>","children":null,"spread":false},{"title":"th.py <span style='color:#111;'> 1.21KB </span>","children":null,"spread":false}],"spread":false},{"title":"nn","children":[{"title":"__init__.py <span style='color:#111;'> 110B </span>","children":null,"spread":false},{"title":"parallel","children":[{"title":"data_parallel.py <span style='color:#111;'> 3.32KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 92B </span>","children":null,"spread":false}],"spread":false},{"title":"modules","children":[{"title":"replicate.py <span style='color:#111;'> 3.15KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 449B </span>","children":null,"spread":false},{"title":"unittest.py <span style='color:#111;'> 835B </span>","children":null,"spread":false},{"title":"tests","children":[{"title":"test_sync_batchnorm.py <span style='color:#111;'> 3.49KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"test_numeric_batchnorm.py <span style='color:#111;'> 1.58KB </span>","children":null,"spread":false}],"spread":false},{"title":"comm.py <span style='color:#111;'> 4.18KB </span>","children":null,"spread":false},{"title":"batchnorm.py <span style='color:#111;'> 13.49KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true},{"title":"dataset.py <span style='color:#111;'> 11.62KB </span>","children":null,"spread":false}],"spread":true},{"title":"download_ADE20K.sh <span style='color:#111;'> 221B </span>","children":null,"spread":false},{"title":"notebooks","children":[{"title":"setup_notebooks.sh <span style='color:#111;'> 447B </span>","children":null,"spread":false},{"title":"ckpt <span style='color:#111;'> 7B </span>","children":null,"spread":false},{"title":"data <span style='color:#111;'> 7B </span>","children":null,"spread":false},{"title":"DemoSegmenter.ipynb <span style='color:#111;'> 7.21KB </span>","children":null,"spread":false},{"title":"mit_semseg <span style='color:#111;'> 13B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 466B </span>","children":null,"spread":false},{"title":"ipynb_drop_output.py <span style='color:#111;'> 2.75KB </span>","children":null,"spread":false},{"title":"config <span style='color:#111;'> 9B </span>","children":null,"spread":false},{"title":"teaser <span style='color:#111;'> 9B </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 12.08KB </span>","children":null,"spread":false},{"title":"eval_multipro.py <span style='color:#111;'> 6.89KB </span>","children":null,"spread":false},{"title":"config","children":[{"title":"ade20k-mobilenetv2dilated-c1_deepsup.yaml <span style='color:#111;'> 762B </span>","children":null,"spread":false},{"title":"ade20k-resnet18dilated-ppm_deepsup.yaml <span style='color:#111;'> 758B </span>","children":null,"spread":false},{"title":"ade20k-resnet101dilated-ppm_deepsup.yaml <span style='color:#111;'> 761B </span>","children":null,"spread":false},{"title":"ade20k-hrnetv2.yaml <span style='color:#111;'> 725B </span>","children":null,"spread":false},{"title":"ade20k-resnet50dilated-ppm_deepsup.yaml <span style='color:#111;'> 759B </span>","children":null,"spread":false},{"title":"ade20k-resnet101-upernet.yaml <span style='color:#111;'> 740B </span>","children":null,"spread":false},{"title":"ade20k-resnet50-upernet.yaml <span style='color:#111;'> 738B </span>","children":null,"spread":false}],"spread":true},{"title":"test.py <span style='color:#111;'> 5.73KB </span>","children":null,"spread":false},{"title":".gitattributes <span style='color:#111;'> 27B </span>","children":null,"spread":false},{"title":"teaser","children":[{"title":"ADE_val_00000278.png <span style='color:#111;'> 616.15KB </span>","children":null,"spread":false},{"title":"ADE_val_00001519.png <span style='color:#111;'> 697.99KB </span>","children":null,"spread":false}],"spread":false},{"title":"train.py <span style='color:#111;'> 9.01KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明