Empirical_Portfolio

上传者: 42102933 | 上传时间: 2022-09-03 01:14:48 | 文件大小: 16.21MB | 文件类型: ZIP
通过概率经验回报分布估计和混合整数线性规划的均值-VaR投资组合优化 在此存储库中的Jupyter笔记本(.ipynb)中,我们提供了一种流行的现代投资组合理论(MPT)方法的替代方法,以优化资产分配。 与MPT相反,在MPT中,财务风险是通过预测收益的波动性(即标准误)来建模的,我们选择通过预测收益的经验性联合分布并制定优化问题以选择资产的目的,来更明确地表征此风险。分配以最大化该分布的均值,并限制资产选择的选择,以确保不会违反根据此经验分布测得的某些风险值(VaR)。 这种方法的主要原因是要解决MPT的主要缺点之一,即不一定捕获回报分配中可能很重的尾巴的行为,从而低估了资产的实际风险。 总体方法可以总结如下: 我们基于历史资产收益建立时间序列模型,以使模型的残差独立且均匀地分布(iid)。 我们使用模型和残差来生成自举预测,即使用时间序列模型预测下一个返回值,并从iid残差中随机采

文件下载

资源详情

[{"title":"( 46 个子文件 16.21MB ) Empirical_Portfolio","children":[{"title":"Empirical_Portfolio-main","children":[{"title":"archive","children":[{"title":"TimeSeriesTest01.ipynb <span style='color:#111;'> 104.86KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"ECDF_v04-checkpoint.ipynb <span style='color:#111;'> 452.03KB </span>","children":null,"spread":false}],"spread":true},{"title":"ECDF_v01.ipynb <span style='color:#111;'> 84.05KB </span>","children":null,"spread":false},{"title":"ECDF_tests02.ipynb <span style='color:#111;'> 25.10KB </span>","children":null,"spread":false},{"title":"ECDF_tests01.ipynb <span style='color:#111;'> 21.49KB </span>","children":null,"spread":false},{"title":"Portfolio Optimization by Shaping the Empirical Return Distribution.ipynb <span style='color:#111;'> 186.21KB </span>","children":null,"spread":false},{"title":"TimeSeriesTest02.ipynb <span style='color:#111;'> 377.79KB </span>","children":null,"spread":false},{"title":"model.lp <span style='color:#111;'> 8.04MB </span>","children":null,"spread":false},{"title":"ECDF_v04.ipynb <span style='color:#111;'> 452.50KB </span>","children":null,"spread":false},{"title":"TimeSeriesTest04.ipynb <span style='color:#111;'> 842.10KB </span>","children":null,"spread":false},{"title":"TimeSeriesTest03.ipynb <span style='color:#111;'> 841.64KB </span>","children":null,"spread":false},{"title":"ECDF_tests03.ipynb <span style='color:#111;'> 27.26KB </span>","children":null,"spread":false},{"title":"ECDF_v02.ipynb <span style='color:#111;'> 110.52KB </span>","children":null,"spread":false},{"title":"ECDF_v03.ipynb <span style='color:#111;'> 185.13KB </span>","children":null,"spread":false},{"title":"R_test01.ipynb <span style='color:#111;'> 76.10KB </span>","children":null,"spread":false}],"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"TimeSeriesTest02-checkpoint.ipynb <span style='color:#111;'> 253.50KB </span>","children":null,"spread":false},{"title":"ECDF_tests03-checkpoint.ipynb <span style='color:#111;'> 27.26KB </span>","children":null,"spread":false},{"title":"ECDF_tests01-checkpoint.ipynb <span style='color:#111;'> 253.92KB </span>","children":null,"spread":false},{"title":"TimeSeriesTest04-checkpoint.ipynb <span style='color:#111;'> 862.66KB </span>","children":null,"spread":false},{"title":"ECDF_tests02-checkpoint.ipynb <span style='color:#111;'> 25.10KB </span>","children":null,"spread":false},{"title":"TimeSeriesTest01-checkpoint.ipynb <span style='color:#111;'> 173.71KB </span>","children":null,"spread":false},{"title":"Portfolio Optimization by Shaping the Empirical Return Distribution-checkpoint.ipynb <span style='color:#111;'> 186.07KB </span>","children":null,"spread":false},{"title":"TimeSeriesTest03-checkpoint.ipynb <span style='color:#111;'> 841.64KB </span>","children":null,"spread":false},{"title":"Portfolio Optimization-checkpoint.ipynb <span style='color:#111;'> 1.08MB </span>","children":null,"spread":false},{"title":"ECDF_v01-checkpoint.ipynb <span style='color:#111;'> 68.13KB </span>","children":null,"spread":false},{"title":"ECDF_v04-checkpoint.ipynb <span style='color:#111;'> 300.17KB </span>","children":null,"spread":false},{"title":"R_test01-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"ECDF_v03-checkpoint.ipynb <span style='color:#111;'> 177.27KB </span>","children":null,"spread":false},{"title":"ECDF_v02-checkpoint.ipynb <span style='color:#111;'> 58.65KB </span>","children":null,"spread":false}],"spread":false},{"title":"data","children":[{"title":"GSPC.csv <span style='color:#111;'> 1.61MB </span>","children":null,"spread":false},{"title":"HSI.csv <span style='color:#111;'> 679.80KB </span>","children":null,"spread":false},{"title":"N225.csv <span style='color:#111;'> 1.00MB </span>","children":null,"spread":false},{"title":"FVX.csv <span style='color:#111;'> 723.18KB </span>","children":null,"spread":false},{"title":"DGS5.csv <span style='color:#111;'> 240.42KB </span>","children":null,"spread":false},{"title":"IRX.csv <span style='color:#111;'> 1016.94KB </span>","children":null,"spread":false},{"title":"gold.csv <span style='color:#111;'> 289.92KB </span>","children":null,"spread":false},{"title":"GCF.csv <span style='color:#111;'> 367.27KB </span>","children":null,"spread":false},{"title":"oil.csv <span style='color:#111;'> 159.91KB </span>","children":null,"spread":false},{"title":"GDAXI.csv <span style='color:#111;'> 630.89KB </span>","children":null,"spread":false}],"spread":true},{"title":"z01.npy <span style='color:#111;'> 242.84KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.88KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"test01.cpython-37.pyc <span style='color:#111;'> 302B </span>","children":null,"spread":false}],"spread":true},{"title":"X01.npy <span style='color:#111;'> 242.84KB </span>","children":null,"spread":false},{"title":"Portfolio Optimization.ipynb <span style='color:#111;'> 1.08MB </span>","children":null,"spread":false},{"title":"prediction01.npy <span style='color:#111;'> 7.23MB </span>","children":null,"spread":false},{"title":".gitattributes <span style='color:#111;'> 66B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明