book_code:《Python广告数据挖掘与分析实战》配套代码-源码

上传者: 42102933 | 上传时间: 2021-08-24 21:42:34 | 文件大小: 1.13MB | 文件类型: ZIP
《Python广告数据挖掘与分析实战》配套代码 本书目前在京东或者当当上均可进行购买,下面附上购买链接 京东: 当当: 注:由于书中部分内容涉及到实际业务数据,不太方便公开,所以github上的部分代码以及代码中所使用到的数据源可能与书中不太一致,但整体代码和实现方式保持不变, 请读者朋友们以github上的数据源和代码为准! 如有疑问可以在数据挖掘与AI算法微信公众号上随时与我联系。感谢大家的支持!

文件下载

资源详情

[{"title":"( 57 个子文件 1.13MB ) book_code:《Python广告数据挖掘与分析实战》配套代码-源码","children":[{"title":"book_code-main","children":[{"title":"chapter_10","children":[{"title":"10.2 常用特征选择方法.ipynb <span style='color:#111;'> 62.75KB </span>","children":null,"spread":false},{"title":"10.3 PCA主成分分析法.ipynb <span style='color:#111;'> 56.90KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"10.2 常用特征选择方法-checkpoint.ipynb <span style='color:#111;'> 62.75KB </span>","children":null,"spread":false},{"title":"10.2 IV值的计算-checkpoint.ipynb <span style='color:#111;'> 14.81KB </span>","children":null,"spread":false},{"title":"10.3 随机森林筛选特征-checkpoint.ipynb <span style='color:#111;'> 5.19KB </span>","children":null,"spread":false},{"title":"10.3 PCA主成分分析法-checkpoint.ipynb <span style='color:#111;'> 56.90KB </span>","children":null,"spread":false},{"title":"10.4 L1和L2综合选取特征-checkpoint.ipynb <span style='color:#111;'> 7.56KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"chapter_6","children":[{"title":"6.1 随机森林.ipynb <span style='color:#111;'> 4.43KB </span>","children":null,"spread":false},{"title":"6.2 GBDT.ipynb <span style='color:#111;'> 2.99KB </span>","children":null,"spread":false},{"title":"6.3 XGBoost.ipynb <span style='color:#111;'> 4.25KB </span>","children":null,"spread":false},{"title":"6.4 Stacking.ipynb <span style='color:#111;'> 9.58KB </span>","children":null,"spread":false},{"title":"6.5 LR+GBDT.ipynb <span style='color:#111;'> 9.06KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"6.6 FM-checkpoint.ipynb <span style='color:#111;'> 5.30KB </span>","children":null,"spread":false},{"title":"6.2 GBDT-checkpoint.ipynb <span style='color:#111;'> 2.99KB </span>","children":null,"spread":false},{"title":"6.3 XGBoost-checkpoint.ipynb <span style='color:#111;'> 4.25KB </span>","children":null,"spread":false},{"title":"6.1 随机森林-checkpoint.ipynb <span style='color:#111;'> 4.43KB </span>","children":null,"spread":false},{"title":"6.4 Stacking-checkpoint.ipynb <span style='color:#111;'> 9.58KB </span>","children":null,"spread":false},{"title":"6.5 LR+GBDT-checkpoint.ipynb <span style='color:#111;'> 9.06KB </span>","children":null,"spread":false}],"spread":true},{"title":"6.6 FM.ipynb <span style='color:#111;'> 5.30KB </span>","children":null,"spread":false}],"spread":true},{"title":"chapter_3","children":[{"title":"3.1 数据基础运算工具:NumPy.ipynb <span style='color:#111;'> 47.86KB </span>","children":null,"spread":false},{"title":"3.3 数据可视化分析工具:Matplotlib.ipynb <span style='color:#111;'> 156.80KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"3.2 数据预处理工具:Pandas-checkpoint.ipynb <span style='color:#111;'> 88.45KB </span>","children":null,"spread":false},{"title":"3.3 数据可视化分析工具:Matplotlib-checkpoint.ipynb <span style='color:#111;'> 156.80KB </span>","children":null,"spread":false},{"title":"3.1 数据基础运算工具:NumPy-checkpoint.ipynb <span style='color:#111;'> 47.86KB </span>","children":null,"spread":false}],"spread":true},{"title":"3.2 数据预处理工具:Pandas.ipynb <span style='color:#111;'> 88.45KB </span>","children":null,"spread":false}],"spread":true},{"title":"chapter_4","children":[{"title":"4.2 分类模型常用评价指标.ipynb <span style='color:#111;'> 156.58KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"4.2 分类模型常用评价指标-checkpoint.ipynb <span style='color:#111;'> 156.58KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"data","children":[{"title":"chapter_9.4.csv <span style='color:#111;'> 10.70KB </span>","children":null,"spread":false},{"title":"ex3.xlsx <span style='color:#111;'> 9.67KB </span>","children":null,"spread":false},{"title":"req_user.csv <span style='color:#111;'> 374B </span>","children":null,"spread":false},{"title":"ex2.csv <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false},{"title":"diabetes_test.txt <span style='color:#111;'> 17.07KB </span>","children":null,"spread":false},{"title":"train.csv <span style='color:#111;'> 58.89KB </span>","children":null,"spread":false},{"title":"chapter_9.2.csv <span style='color:#111;'> 509B </span>","children":null,"spread":false},{"title":"chapter_9.1.csv <span style='color:#111;'> 3.78KB </span>","children":null,"spread":false},{"title":"chapter_9.4(2).csv <span style='color:#111;'> 9.47KB </span>","children":null,"spread":false},{"title":"test.csv <span style='color:#111;'> 28.37KB </span>","children":null,"spread":false},{"title":"diabetes_train.txt <span style='color:#111;'> 35.17KB </span>","children":null,"spread":false}],"spread":false},{"title":"数据挖掘与AI算法.jpg <span style='color:#111;'> 140.78KB </span>","children":null,"spread":false},{"title":"chapter_5","children":[{"title":"5.5 神经网络.ipynb <span style='color:#111;'> 5.32KB </span>","children":null,"spread":false},{"title":"5.3 KNN.ipynb <span style='color:#111;'> 3.44KB </span>","children":null,"spread":false},{"title":"5.2 决策树.ipynb <span style='color:#111;'> 48.70KB </span>","children":null,"spread":false},{"title":"5.1 逻辑回归.ipynb <span style='color:#111;'> 62.89KB </span>","children":null,"spread":false},{"title":"5.4 SVM.ipynb <span style='color:#111;'> 87.67KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"5.3 KNN-checkpoint.ipynb <span style='color:#111;'> 3.44KB </span>","children":null,"spread":false},{"title":"5.1 逻辑回归-checkpoint.ipynb <span style='color:#111;'> 62.89KB </span>","children":null,"spread":false},{"title":"5.2 决策树-checkpoint.ipynb <span style='color:#111;'> 48.70KB </span>","children":null,"spread":false},{"title":"5.5 神经网络-checkpoint.ipynb <span style='color:#111;'> 5.32KB </span>","children":null,"spread":false},{"title":"5.4 SVM-checkpoint.ipynb <span style='color:#111;'> 87.67KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"chapter_9","children":[{"title":"9.4 Lookalike相似用户聚类分析.ipynb <span style='color:#111;'> 5.98KB </span>","children":null,"spread":false},{"title":"9.2 广告用户曝光与点击率分析.ipynb <span style='color:#111;'> 16.02KB </span>","children":null,"spread":false},{"title":"9.1 广告用户曝光与响应率分析.ipynb <span style='color:#111;'> 29.44KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"9.1 广告用户曝光与响应率分析-checkpoint.ipynb <span style='color:#111;'> 29.44KB </span>","children":null,"spread":false},{"title":"9.4 Lookalike相似用户聚类分析-checkpoint.ipynb <span style='color:#111;'> 5.98KB </span>","children":null,"spread":false},{"title":"9.2 广告用户曝光与点击率分析-checkpoint.ipynb <span style='color:#111;'> 16.02KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"《Python广告数据与分析实战》.jpg <span style='color:#111;'> 22.03KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 980B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明