Malsite-Deep:Malsite-Deep:基于NearMiss-2策略的深度学习和多信息融合预测蛋白的丙二酸化位点

上传者: 42102401 | 上传时间: 2022-05-28 16:36:47 | 文件大小: 1.48MB | 文件类型: ZIP
## Malsite-Deep Malsite-Deep:基于NearMiss-2策略的深度学习和多信息融合预测蛋白质丙二酸化位点 ### Malsite-Deep使用以下依赖项: Python 3.6 麻木 科学的 scikit学习 大熊猫 TensorFlow 凯拉斯 ###指导原则:**数据集文件包含五类数据集,其中包含训练数据集和独立测试数据集。 **特征提取: PseAAC.py是PseAAC的实现。 exchange_matrix.m和be_extract_feature是BE的实现。 Bi_profile_bayes.m是BPB的实现。 DPC.py是实施DC的实现。 EBGW_DATA.m和EBGW.m是EBGW的实现。 BLOSUM62.py是BLOSUM62的实现。 EAAC.py是EAAC的实现。 PWAA_Y1.m是PWAA的实现。 **

文件下载

资源详情

[{"title":"( 31 个子文件 1.48MB ) Malsite-Deep:Malsite-Deep:基于NearMiss-2策略的深度学习和多信息融合预测蛋白的丙二酸化位点","children":[{"title":"Malsite-Deep-master","children":[{"title":"classifier","children":[{"title":"SVM.py <span style='color:#111;'> 4.40KB </span>","children":null,"spread":false},{"title":"GTB.py <span style='color:#111;'> 4.39KB </span>","children":null,"spread":false},{"title":"NB.py <span style='color:#111;'> 4.37KB </span>","children":null,"spread":false},{"title":"DNN.py <span style='color:#111;'> 4.63KB </span>","children":null,"spread":false},{"title":"GRUD.py <span style='color:#111;'> 2.93KB </span>","children":null,"spread":false},{"title":"LightGBM.py <span style='color:#111;'> 4.40KB </span>","children":null,"spread":false},{"title":"RF.py <span style='color:#111;'> 4.38KB </span>","children":null,"spread":false},{"title":"LSTM.py <span style='color:#111;'> 3.86KB </span>","children":null,"spread":false},{"title":"XGBoost.py <span style='color:#111;'> 4.37KB </span>","children":null,"spread":false},{"title":"GRU.py <span style='color:#111;'> 2.61KB </span>","children":null,"spread":false},{"title":"AdaBoost.py <span style='color:#111;'> 4.41KB </span>","children":null,"spread":false},{"title":"CNN.py <span style='color:#111;'> 3.86KB </span>","children":null,"spread":false}],"spread":false},{"title":"Readme.md <span style='color:#111;'> 1.40KB </span>","children":null,"spread":false},{"title":"feature_extraction","children":[{"title":"BE","children":[{"title":"be_extract_feature.m <span style='color:#111;'> 788B </span>","children":null,"spread":false},{"title":"exchange_matrix.m <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false}],"spread":true},{"title":"EAAC","children":[{"title":"EAAC.py <span style='color:#111;'> 1.92KB </span>","children":null,"spread":false}],"spread":true},{"title":"PWAA","children":[{"title":"PWAA_CC.m <span style='color:#111;'> 2.15KB </span>","children":null,"spread":false},{"title":"PWAA_Y1.m <span style='color:#111;'> 256B </span>","children":null,"spread":false},{"title":"PWAA_demo.m <span style='color:#111;'> 1.99KB </span>","children":null,"spread":false}],"spread":true},{"title":"BLOUSUM62","children":[{"title":"BLOSUM62.py <span style='color:#111;'> 3.21KB </span>","children":null,"spread":false}],"spread":true},{"title":"EBGW","children":[{"title":"EBGW.m <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false},{"title":"EBGW_DATA.m <span style='color:#111;'> 192B </span>","children":null,"spread":false}],"spread":true},{"title":"DC","children":[{"title":"DPC.py <span style='color:#111;'> 933B </span>","children":null,"spread":false}],"spread":true},{"title":"BPB","children":[{"title":"AAC.m <span style='color:#111;'> 375B </span>","children":null,"spread":false},{"title":"Bi_profile_bayes.m <span style='color:#111;'> 964B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"NearMiss_2","children":[{"title":"NearMiss_2.py <span style='color:#111;'> 2.20KB </span>","children":null,"spread":false}],"spread":true},{"title":"datasets","children":[{"title":"Independent test Set4.txt <span style='color:#111;'> 74.18KB </span>","children":null,"spread":false},{"title":"Training data.txt <span style='color:#111;'> 3.25MB </span>","children":null,"spread":false},{"title":"Independent test Set3.txt <span style='color:#111;'> 278.03KB </span>","children":null,"spread":false},{"title":"Independent test Set1.txt <span style='color:#111;'> 774.58KB </span>","children":null,"spread":false},{"title":"Independent test Set2.txt <span style='color:#111;'> 178.24KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明