deep-weather:深度学习用于后处理集成天气预报

上传者: 42101164 | 上传时间: 2022-04-13 22:52:11 | 文件大小: 157.74MB | 文件类型: ZIP
深度学习用于后处理集成天气预报 我们使可用的数据,以及为需要运行在我们的模型中的代码通过这个资料库。 我们希望我们的发现和数据可以用于进一步推进天气预报研究。 研究内容 我们的研究重点是应用从深度学习到集成天气预报的最新架构。 为了实现这一目标,我们使用来自ECMWF的全局重新预测数据(我们称为ENS10 )以及重新分析数据ERA5 。 更具体地说,ENS10旨在为研究人员提供基本的预报值数据集,这些数据将用于现代数值天气预报管道中。 使用ERA5数据作为基本事实,然后使用整体预测的子集进行后处理和改进。 我们的目标是帮助天气预报中心更便宜,更准确地预测极端天气事件。 在热带气旋的情况下,我们使用五个轨迹的子集,在全部10个成员合奏中的连续排名概率得分(CRPS)中进行了测量,相对于预测技能,其相对提高了26%以上。 此外,这些模型可以更准确地预测旋风的未来路径。 依存关系 为了通过虚拟

文件下载

资源详情

[{"title":"( 62 个子文件 157.74MB ) deep-weather:深度学习用于后处理集成天气预报","children":[{"title":"deep-weather-master","children":[{"title":"requirements.txt <span style='color:#111;'> 318B </span>","children":null,"spread":false},{"title":"Bias_Correction","children":[{"title":"args.py <span style='color:#111;'> 4.26KB </span>","children":null,"spread":false},{"title":"plot.py <span style='color:#111;'> 9.15KB </span>","children":null,"spread":false},{"title":"ckpt","children":[{"title":".readme <span style='color:#111;'> 28B </span>","children":null,"spread":false}],"spread":true},{"title":"run.py <span style='color:#111;'> 334B </span>","children":null,"spread":false},{"title":"data","children":[{"title":"tfdata","children":[{"title":".readme <span style='color:#111;'> 34B </span>","children":null,"spread":false}],"spread":true},{"title":"planalysis <span style='color:#111;'> 340B </span>","children":null,"spread":false},{"title":"npydata","children":[{"title":".readme <span style='color:#111;'> 40B </span>","children":null,"spread":false}],"spread":true},{"title":"GRIBglobal.py <span style='color:#111;'> 10.76KB </span>","children":null,"spread":false},{"title":"initdata","children":[{"title":".readme <span style='color:#111;'> 29B </span>","children":null,"spread":false}],"spread":true},{"title":"data_macro.py <span style='color:#111;'> 1.79KB </span>","children":null,"spread":false},{"title":"dataset.py <span style='color:#111;'> 1.09KB </span>","children":null,"spread":false},{"title":"GRIBemos.py <span style='color:#111;'> 9.90KB </span>","children":null,"spread":false},{"title":"plfl <span style='color:#111;'> 1.95KB </span>","children":null,"spread":false}],"spread":true},{"title":"log","children":[{"title":".readme <span style='color:#111;'> 33B </span>","children":null,"spread":false}],"spread":true},{"title":"models","children":[{"title":"Unet3_tile.py <span style='color:#111;'> 2.63KB </span>","children":null,"spread":false},{"title":"one2one.py <span style='color:#111;'> 1.74KB </span>","children":null,"spread":false},{"title":"refcrps.py <span style='color:#111;'> 2.37KB </span>","children":null,"spread":false},{"title":"LCN.py <span style='color:#111;'> 4.57KB </span>","children":null,"spread":false},{"title":"Unet2_main.py <span style='color:#111;'> 3.35KB </span>","children":null,"spread":false},{"title":"layers.py <span style='color:#111;'> 15.22KB </span>","children":null,"spread":false},{"title":"Unet3_local.py <span style='color:#111;'> 2.87KB </span>","children":null,"spread":false},{"title":"models.py <span style='color:#111;'> 11.85KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 25.43KB </span>","children":null,"spread":false},{"title":"tile_CNN.py <span style='color:#111;'> 2.73KB </span>","children":null,"spread":false},{"title":"Unet2.py <span style='color:#111;'> 6.20KB </span>","children":null,"spread":false},{"title":"Unet2_l2.py <span style='color:#111;'> 5.42KB </span>","children":null,"spread":false},{"title":"memory_saving_gradients.py <span style='color:#111;'> 17.56KB </span>","children":null,"spread":false},{"title":"refmse.py <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false},{"title":"Unet3.py <span style='color:#111;'> 2.41KB </span>","children":null,"spread":false},{"title":"emos.py <span style='color:#111;'> 2.70KB </span>","children":null,"spread":false},{"title":"LCN_unet.py <span style='color:#111;'> 7.09KB </span>","children":null,"spread":false}],"spread":false},{"title":"README.md <span style='color:#111;'> 3.98KB </span>","children":null,"spread":false},{"title":"config.py <span style='color:#111;'> 2.17KB </span>","children":null,"spread":false},{"title":"global_macros.py <span style='color:#111;'> 375B </span>","children":null,"spread":false},{"title":"cross_validate.py <span style='color:#111;'> 4.63KB </span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'> 5.08KB </span>","children":null,"spread":false},{"title":"combine_pred.py <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false},{"title":"runall.sh <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false}],"spread":false},{"title":"conda-requirements.txt <span style='color:#111;'> 303B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 5.51KB </span>","children":null,"spread":false},{"title":"report","children":[{"title":"fig2p2.pdf <span style='color:#111;'> 60.49KB </span>","children":null,"spread":false},{"title":"G_Winston_B5U5C-E10_step1.png <span style='color:#111;'> 356.83KB </span>","children":null,"spread":false},{"title":"G_Winston_E10_step1.png <span style='color:#111;'> 157.34KB </span>","children":null,"spread":false}],"spread":true},{"title":"Uncertainty_Quantification","children":[{"title":"Preprocessing","children":[{"title":"means.npy <span style='color:#111;'> 83.29MB </span>","children":null,"spread":false},{"title":"GRIB2npy.py <span style='color:#111;'> 4.74KB </span>","children":null,"spread":false},{"title":"npy2tfr.py <span style='color:#111;'> 4.21KB </span>","children":null,"spread":false},{"title":"stddevs.npy <span style='color:#111;'> 83.29MB </span>","children":null,"spread":false},{"title":"preprocessing_parameters.py <span style='color:#111;'> 1.19KB </span>","children":null,"spread":false}],"spread":true},{"title":"Pytorch","children":[{"title":"infer.py <span style='color:#111;'> 4.76KB </span>","children":null,"spread":false},{"title":"loader.py <span style='color:#111;'> 4.44KB </span>","children":null,"spread":false},{"title":"pytorch_environment.yml <span style='color:#111;'> 2.80KB </span>","children":null,"spread":false},{"title":"models.py <span style='color:#111;'> 12.53KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 4.58KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 3.38KB </span>","children":null,"spread":false},{"title":"ssim.py <span style='color:#111;'> 10.86KB </span>","children":null,"spread":false},{"title":"Model_Filter.ipynb <span style='color:#111;'> 12.68MB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 6.33KB </span>","children":null,"spread":false}],"spread":true},{"title":"RESNET2D.py <span style='color:#111;'> 8.55KB </span>","children":null,"spread":false},{"title":"parameters.py <span style='color:#111;'> 2.29KB </span>","children":null,"spread":false},{"title":"predict.py <span style='color:#111;'> 3.10KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 6.79KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明