Learning-Pandas-Second-Edition:Packt出版的《学习熊猫》,第二版

上传者: 42100971 | 上传时间: 2023-02-22 18:16:53 | 文件大小: 4.13MB | 文件类型: ZIP
学习熊猫-第二版 这是出版的的代码库。 它包含从头到尾完成本书所必需的所有支持项目文件。 关于这本书 您将学习如何使用熊猫在Python中执行数据分析。 您将首先概述数据分析,并逐步进行建模数据,从远程源访问数据,执行数字和统计分析,通过建立索引和执行汇总分析,最后到可视化统计数据并将熊猫应用于金融。 借助从本书中学到的知识,您将快速学习熊猫,以及熊猫如何在令人兴奋的数据处理,分析和科学世界中为您提供支持。 说明和导航 所有代码都组织在文件夹中。 每个文件夹均以数字开头,后跟应用程序名称。 例如,Chapter02。 代码如下所示:文本中的代码字如下所示: "This information can be easily imported into DataFrame using the pd.read_csv() function as follows." 在Python解释器中

文件下载

资源详情

[{"title":"( 38 个子文件 4.13MB ) Learning-Pandas-Second-Edition:Packt出版的《学习熊猫》,第二版","children":[{"title":"Learning-Pandas-Second-Edition-master","children":[{"title":"Chapter13","children":[{"title":"13_Time_Series_Data.ipynb <span style='color:#111;'> 163.23KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter05","children":[{"title":"05_Manipulating DataFrame Structure and Contents.ipynb <span style='color:#111;'> 29.46KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter04","children":[{"title":"04_Table_And_MultiVariate_Data_with_The_DataFrame.ipynb <span style='color:#111;'> 23.90KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter03","children":[{"title":"03_Variable Representation using a Series.ipynb <span style='color:#111;'> 43.41KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter07","children":[{"title":"07_Categorical Data.ipynb <span style='color:#111;'> 22.15KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter02","children":[{"title":"02_Up and Running with pandas.ipynb <span style='color:#111;'> 49.15KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter11","children":[{"title":"11_Reorganizing_and_Reshaping_Data.ipynb <span style='color:#111;'> 34.89KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter15","children":[{"title":"15_Finance.ipynb <span style='color:#111;'> 959.40KB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.65KB </span>","children":null,"spread":false},{"title":"Chapter12","children":[{"title":"12_Grouping_and_Aggregating.ipynb <span style='color:#111;'> 88.64KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter06","children":[{"title":"06_Working with Indexes.ipynb <span style='color:#111;'> 32.41KB </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"stocks.sqlite <span style='color:#111;'> 632.00KB </span>","children":null,"spread":false},{"title":"msft.csv <span style='color:#111;'> 149.52KB </span>","children":null,"spread":false},{"title":"all_stocks.xls <span style='color:#111;'> 872.00KB </span>","children":null,"spread":false},{"title":"meteorite-landings.csv <span style='color:#111;'> 4.75MB </span>","children":null,"spread":false},{"title":"test1.csv <span style='color:#111;'> 659B </span>","children":null,"spread":false},{"title":"msft2.xlsx <span style='color:#111;'> 156.99KB </span>","children":null,"spread":false},{"title":"stocks.xlsx <span style='color:#111;'> 499.81KB </span>","children":null,"spread":false},{"title":"aapl.csv <span style='color:#111;'> 158.43KB </span>","children":null,"spread":false},{"title":"omh.csv <span style='color:#111;'> 539B </span>","children":null,"spread":false},{"title":"stocks_msft.xls <span style='color:#111;'> 328.50KB </span>","children":null,"spread":false},{"title":"stocks.json <span style='color:#111;'> 403B </span>","children":null,"spread":false},{"title":"sp500.csv <span style='color:#111;'> 81.67KB </span>","children":null,"spread":false},{"title":"accel.csv <span style='color:#111;'> 114B </span>","children":null,"spread":false},{"title":"store.h5 <span style='color:#111;'> 702.75KB </span>","children":null,"spread":false},{"title":"goog.csv <span style='color:#111;'> 3.52KB </span>","children":null,"spread":false},{"title":"sensors.csv <span style='color:#111;'> 423B </span>","children":null,"spread":false},{"title":"msft_modified.csv <span style='color:#111;'> 57.93KB </span>","children":null,"spread":false},{"title":"msft2.csv <span style='color:#111;'> 531B </span>","children":null,"spread":false},{"title":"stocks2.xls <span style='color:#111;'> 328.50KB </span>","children":null,"spread":false},{"title":"stocks.html <span style='color:#111;'> 609B </span>","children":null,"spread":false},{"title":"msft_piped.txt <span style='color:#111;'> 167.90KB </span>","children":null,"spread":false},{"title":"msft_with_footer.csv <span style='color:#111;'> 149B </span>","children":null,"spread":false}],"spread":false},{"title":"Chapter09","children":[{"title":"09_Accessing_Data.ipynb <span style='color:#111;'> 45.09KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter08","children":[{"title":"08_Numeric and Statistical Methods.ipynb <span style='color:#111;'> 70.80KB </span>","children":null,"spread":false}],"spread":false},{"title":"Chapter14","children":[{"title":"14_Visualization.ipynb <span style='color:#111;'> 1.02MB </span>","children":null,"spread":false}],"spread":false},{"title":"Chapter10","children":[{"title":"10_Tidying_Your_Data.ipynb <span style='color:#111;'> 37.34KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明