WSDM21-Hands-on-Tutorial:具有深图库的可扩展图神经网络-源码

上传者: 42099987 | 上传时间: 2021-10-23 12:50:47 | 文件大小: 53KB | 文件类型: -
WSDM'21教程:具有深图库的可扩展图神经网络 时间: 2021年3月8日,上午9:30-下午12:00(GMT + 2) 作者:来自亚马逊AI的大正,王敏杰,甘泉,宋松,张正 从图和关系数据中学习在许多应用程序中起着重要作用,包括社交网络分析,市场营销,电子商务,信息检索,知识建模,医学和生物科学,工程学等。 在过去的几年中,图形神经网络(GNN)成为一种有前途的新型监督学习框架,能够将深度表示学习的功能引入图形和关系数据。 这项不断发展的研究表明,GNN在诸如链接预测,欺诈检测,目标配体结合活性预测,知识图完成和产品推荐等问题上达到了最先进的性能。 实际上,许多现实世界的图都非常大。 迫切需要一种可扩展的解决方案,以在大型图形上有效地训练GNN。 本教程将概述GNN背后的理论,讨论GNN非常适合的问题类型,并介绍一些最广泛使用的GNN模型架构以及旨在解决的问题/应用程序。 它将引入

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明