reggie:贝叶斯回归

上传者: 42099151 | 上传时间: 2022-12-26 09:15:45 | 文件大小: 48KB | 文件类型: ZIP
雷吉 用于贝叶斯回归的Python软件包。 该软件包的目标是成为一个相对独立的python软件包,用于解决贝叶斯回归问题。 暂时,此软件包的主要关注点是松散地基于Matlab中Carl Rasmussen的GPML工具箱的高斯过程(GP)模型,但是当我们尝试对其中一些方法进行归纳时,关注点已经发生了微小的变化。 安装 安装此软件包的最简单方法是运行 pip install -r https://github.com/mwhoffman/reggie/raw/master/requirements.txt pip install git+https://github.com/mwhoffman/reggie.git 这将安装该软件包及其任何依赖项。 安装软件包后,即可通过python直接运行随附的演示。 例如,通过运行 python -m reggie.demos.basic 演示的完整列

文件下载

资源详情

[{"title":"( 53 个子文件 48KB ) reggie:贝叶斯回归","children":[{"title":"reggie-master","children":[{"title":".gitignore <span style='color:#111;'> 44B </span>","children":null,"spread":false},{"title":"setup.cfg <span style='color:#111;'> 67B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"tests","children":[{"title":"test_core_domains.py <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false},{"title":"test_means.py <span style='color:#111;'> 1.50KB </span>","children":null,"spread":false},{"title":"test_likelihoods.py <span style='color:#111;'> 2.61KB </span>","children":null,"spread":false},{"title":"test_models.py <span style='color:#111;'> 2.76KB </span>","children":null,"spread":false},{"title":"test_core_params.py <span style='color:#111;'> 9.55KB </span>","children":null,"spread":false},{"title":"test_core_priors.py <span style='color:#111;'> 1.55KB </span>","children":null,"spread":false},{"title":"test_kernels.py <span style='color:#111;'> 4.64KB </span>","children":null,"spread":false},{"title":"test_kernels_distances.py <span style='color:#111;'> 1.30KB </span>","children":null,"spread":false}],"spread":true},{"title":".coveragerc <span style='color:#111;'> 239B </span>","children":null,"spread":false},{"title":"AUTHORS.txt <span style='color:#111;'> 35B </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 104B </span>","children":null,"spread":false},{"title":"LICENSE.txt <span style='color:#111;'> 1.27KB </span>","children":null,"spread":false},{"title":"setup.py <span style='color:#111;'> 989B </span>","children":null,"spread":false},{"title":"reggie","children":[{"title":"utils","children":[{"title":"misc.py <span style='color:#111;'> 935B </span>","children":null,"spread":false},{"title":"linalg.py <span style='color:#111;'> 2.96KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"likelihoods","children":[{"title":"gaussian.py <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false},{"title":"probit.py <span style='color:#111;'> 1014B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 249B </span>","children":null,"spread":false},{"title":"_core.py <span style='color:#111;'> 1.44KB </span>","children":null,"spread":false}],"spread":true},{"title":"kernels","children":[{"title":"matern.py <span style='color:#111;'> 3.30KB </span>","children":null,"spread":false},{"title":"_distances.py <span style='color:#111;'> 1.51KB </span>","children":null,"spread":false},{"title":"se.py <span style='color:#111;'> 2.92KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 231B </span>","children":null,"spread":false},{"title":"_core.py <span style='color:#111;'> 1.80KB </span>","children":null,"spread":false}],"spread":true},{"title":"means","children":[{"title":"__init__.py <span style='color:#111;'> 173B </span>","children":null,"spread":false},{"title":"_core.py <span style='color:#111;'> 894B </span>","children":null,"spread":false},{"title":"basic.py <span style='color:#111;'> 3.25KB </span>","children":null,"spread":false}],"spread":false},{"title":"models","children":[{"title":"meta.py <span style='color:#111;'> 2.87KB </span>","children":null,"spread":false},{"title":"bandit.py <span style='color:#111;'> 3.23KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 280B </span>","children":null,"spread":false},{"title":"_core.py <span style='color:#111;'> 3.30KB </span>","children":null,"spread":false},{"title":"gp","children":[{"title":"fourier.py <span style='color:#111;'> 1.90KB </span>","children":null,"spread":false},{"title":"inference.py <span style='color:#111;'> 6.01KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 129B </span>","children":null,"spread":false},{"title":"gp.py <span style='color:#111;'> 10.03KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"demos","children":[{"title":"posterior.py <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"sparse.py <span style='color:#111;'> 1.14KB </span>","children":null,"spread":false},{"title":"fourier.py <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"basic.py <span style='color:#111;'> 1.02KB </span>","children":null,"spread":false}],"spread":false},{"title":"__init__.py <span style='color:#111;'> 298B </span>","children":null,"spread":false},{"title":"core","children":[{"title":"domains.py <span style='color:#111;'> 2.34KB </span>","children":null,"spread":false},{"title":"priors.py <span style='color:#111;'> 5.03KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"params.py <span style='color:#111;'> 17.60KB </span>","children":null,"spread":false}],"spread":false},{"title":"learning","children":[{"title":"optimization.py <span style='color:#111;'> 1.98KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 141B </span>","children":null,"spread":false},{"title":"sampling.py <span style='color:#111;'> 2.73KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":".travis.yml <span style='color:#111;'> 1.40KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明