kddcup2018-of-fresh-air:#30在KDD CUP 2018 https-源码

上传者: 42097508 | 上传时间: 2021-10-11 15:23:52 | 文件大小: 73KB | 文件类型: -
哇〜! KDD的其他竞争对手。 我在第一天参加了这项比赛,很快就建立了一个合理的基准。 由于某些私人方面的原因,自5月初以来,我几乎停止改善自己的解决方案。 尽管与第2阶段的许多顶级参与者相比,我的方法不能很好地发挥作用,但是我认为我的解决方案由于相对简单而值得共享。 我一点也没有接触过meo数据,我的一个模型只是计算中位数。 替代数据源 对于新每小时的空气质量数据,在论坛上为共享,我使用伦敦和对北京而不是从组织者的API。 处理丢失的数据 我通过3个步骤填充了空气质量数据中的缺失值: 根据其他测站的值填充测站组合的缺失值。 具体来说:我为此训练了131个lightgbm回归器。 如果北京奥特中信站5月20日2:00的PM2.5读数丢失,则回归器aotizhongxin_aq-PM2.5将基于5月20日2:00已知的北京其他34个站的PM2.5读数来预测该值。 我使用阈值来决定是否进行这

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明