classification-of-encrypted-traffic:该存储库包含2018年DTU Compute硕士论文期间使用和开发的代码

上传者: 42097189 | 上传时间: 2023-01-02 23:16:37 | 文件大小: 18.59MB | 文件类型: ZIP
使用深度学习对加密流量进行分类 该存储库包含在2018年DTU Compute的硕士学位论文中使用和开发的代码。 教授一直是该硕士论文的导师。 来自一直是该项目的联合主管。 在本文中,我们研究和评估了使用神经网络对加密网络流量进行分类的不同方法。 为此,我们创建了一个具有流/非流焦点的数据集。 数据集包括七个不同的类,五个流分类和两个非流分类。 本文是对Napatech A / S的初步概念验证。 我们提出了一种新颖的方法,其中利用了网络流量的未加密部分,即标头。 这是通过将会话中的初始标头串联起来,从而形成一个签名数据点来完成的,如下图所示: 通过使用前8个和16个标头创建的数据集在此存储库的datasets文件夹中可用。 我们通过在串联头数据集上运行t-SNE来探索数据集。 从下面的t-SNE图可以看出,该图显示了合并的所有单个数据集,似乎可以对单个类进行分类。 在使用基于标头

文件下载

资源详情

[{"title":"( 51 个子文件 18.59MB ) classification-of-encrypted-traffic:该存储库包含2018年DTU Compute硕士论文期间使用和开发的代码","children":[{"title":"classification-of-encrypted-traffic-master","children":[{"title":"trafficgen","children":[{"title":"PyTgen","children":[{"title":"nslookup.py <span style='color:#111;'> 494B </span>","children":null,"spread":false},{"title":"config.py <span style='color:#111;'> 6.58KB </span>","children":null,"spread":false},{"title":"core","children":[{"title":"runner.py <span style='color:#111;'> 2.81KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 121B </span>","children":null,"spread":false},{"title":"generator.py <span style='color:#111;'> 17.65KB </span>","children":null,"spread":false},{"title":"scheduler.py <span style='color:#111;'> 4.29KB </span>","children":null,"spread":false}],"spread":true},{"title":"run.py <span style='color:#111;'> 1.99KB </span>","children":null,"spread":false}],"spread":true},{"title":"Streaming","children":[{"title":"streaming_generator.py <span style='color:#111;'> 5.24KB </span>","children":null,"spread":false},{"title":"streaming_types.py <span style='color:#111;'> 2.08KB </span>","children":null,"spread":false},{"title":"win_capture.py <span style='color:#111;'> 899B </span>","children":null,"spread":false},{"title":"unix_capture.py <span style='color:#111;'> 995B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"convert_pcap_to_h5.py <span style='color:#111;'> 156B </span>","children":null,"spread":false},{"title":"data_exploration.py <span style='color:#111;'> 4.62KB </span>","children":null,"spread":false},{"title":"train","children":[{"title":"train_header.py <span style='color:#111;'> 12.67KB </span>","children":null,"spread":false},{"title":"train_payload.py <span style='color:#111;'> 10.47KB </span>","children":null,"spread":false},{"title":"train_logistic.py <span style='color:#111;'> 2.29KB </span>","children":null,"spread":false}],"spread":true},{"title":"pca","children":[{"title":"pca.py <span style='color:#111;'> 2.72KB </span>","children":null,"spread":false},{"title":"dataanalyzer.py <span style='color:#111;'> 2.79KB </span>","children":null,"spread":false},{"title":"summarystats.py <span style='color:#111;'> 2.92KB </span>","children":null,"spread":false}],"spread":true},{"title":"filter_http_https.py <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 16.79KB </span>","children":null,"spread":false},{"title":"extract_headers.py <span style='color:#111;'> 454B </span>","children":null,"spread":false},{"title":"pcap","children":[{"title":"pcaptools.py <span style='color:#111;'> 7.38KB </span>","children":null,"spread":false}],"spread":true},{"title":"datasets","children":[{"title":"WindowsSalik","children":[{"title":"16","children":[{"title":"extracted_16-2004_1542.h5 <span style='color:#111;'> 6.21MB </span>","children":null,"spread":false}],"spread":true},{"title":"8","children":[{"title":"extracted_8-2004_1525.h5 <span style='color:#111;'> 3.97MB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"LinuxChrome","children":[{"title":"16","children":[{"title":"extracted_16-2104_1523.h5 <span style='color:#111;'> 19.75MB </span>","children":null,"spread":false}],"spread":true},{"title":"8","children":[{"title":"extracted_8-2104_1422.h5 <span style='color:#111;'> 11.65MB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"WindowsChrome","children":[{"title":"16","children":[{"title":"extracted_16-2004_1615.h5 <span style='color:#111;'> 7.65MB </span>","children":null,"spread":false}],"spread":false},{"title":"8","children":[{"title":"extracted_8-2004_1553.h5 <span style='color:#111;'> 4.81MB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"WindowsFirefox","children":[{"title":"16","children":[{"title":"extracted_16-2004_2210.h5 <span style='color:#111;'> 25.58MB </span>","children":null,"spread":false}],"spread":false},{"title":"8","children":[{"title":"extracted_8-2004_2104.h5 <span style='color:#111;'> 14.97MB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"WindowsAndreas","children":[{"title":"16","children":[{"title":"extracted_16-2304_0932.h5 <span style='color:#111;'> 5.15MB </span>","children":null,"spread":false}],"spread":false},{"title":"8","children":[{"title":"extracted_8-2304_0930.h5 <span style='color:#111;'> 3.39MB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"extract_payload.py <span style='color:#111;'> 1.55KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.14KB </span>","children":null,"spread":false},{"title":"ip_header_test.py <span style='color:#111;'> 1017B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 137B </span>","children":null,"spread":false},{"title":"Master_Thesis.pdf <span style='color:#111;'> 4.10MB </span>","children":null,"spread":false},{"title":"tf","children":[{"title":"early_stopping.py <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false},{"title":"confusionmatrix.py <span style='color:#111;'> 4.17KB </span>","children":null,"spread":false},{"title":"dataset.py <span style='color:#111;'> 8.51KB </span>","children":null,"spread":false},{"title":"tf_utils.py <span style='color:#111;'> 9.32KB </span>","children":null,"spread":false}],"spread":false},{"title":"visualization","children":[{"title":"vis_utils.py <span style='color:#111;'> 3.11KB </span>","children":null,"spread":false},{"title":"t-sne_compare.py <span style='color:#111;'> 3.95KB </span>","children":null,"spread":false},{"title":"histogram.py <span style='color:#111;'> 2.84KB </span>","children":null,"spread":false},{"title":"visualize_activations.py <span style='color:#111;'> 3.83KB </span>","children":null,"spread":false},{"title":"heatmap.py <span style='color:#111;'> 2.47KB </span>","children":null,"spread":false},{"title":"t_sne.py <span style='color:#111;'> 3.43KB </span>","children":null,"spread":false},{"title":"pca_plots.py <span style='color:#111;'> 2.07KB </span>","children":null,"spread":false},{"title":"classes_module.py <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明