上传者: 40892064
|
上传时间: 2026-02-07 11:26:30
|
文件大小: 2.52MB
|
文件类型: PDF
基于多传感器数据融合的多目标跟踪算法研究
摘要:本文研究基于多传感器数据融合的多目标跟踪算法,提出了一种基于改进动态加权数据融合的UKF滤波多目标跟踪算法。该算法基于分布式融合结构,对于每个传感器得到的多个目标的观测信息,首先通过最近邻数据关联算法进行航迹关联;然后用无迹卡尔曼滤波完成对多目标状态的估计,得到目标最新的运动轨迹;综合多个传感器估计的目标轨迹,应用改进的动态加权数据融合算法,得到最终的目标轨迹。
关键词:多传感器数据融合;多目标跟踪;无迹卡尔曼滤波;动态加权融合
본文对基于多传感器数据融合的多目标跟踪算法进行了深入研究,提出了基于改进动态加权数据融合的UKF滤波多目标跟踪算法。该算法的提出解决了多目标跟踪问题中数据融合的缺陷,提高了目标跟踪的精度。
多目标跟踪是指融合多个传感器对多个目标的观测数据实现对多个目标的轨迹跟踪,以达到单一传感器和单一信号源所不能达到的测量精度。该算法的设计是基于分布式融合结构,对于每个传感器得到的多个目标的观测信息,首先通过最近邻数据关联算法进行航迹关联;然后用无迹卡尔曼滤波完成对多目标状态的估计,得到目标最新的运动轨迹;综合多个传感器估计的目标轨迹,应用改进的动态加权数据融合算法,得到最终的目标轨迹。
该算法的优点在于它可以有效地发挥多传感器数据融合优势,准确地跟踪多个运动目标。与单传感器目标跟踪相比,多传感器数据融合后的目标跟踪精度提高20%以上。
本文还对基于多传感器数据融合的多目标跟踪算法的设计问题进行了深入研究,提出了基于动态加权平均数据融合的UKF滤波多目标跟踪算法的实现方法,完成了多目标融合跟踪系统的设计。
本文的贡献在于解决了多目标跟踪问题中数据融合的缺陷,提高了目标跟踪的精度。该算法可以应用于各种需要多目标跟踪的领域,如自动驾驶、机器人、智能家居等。
本文的研究结果表明,基于多传感器数据融合的多目标跟踪算法可以有效地提高目标跟踪的精度,满足了多目标跟踪的需求。