机器学习算法知识手册.pdf.rar

上传者: 40699929 | 上传时间: 2021-06-10 11:25:53 | 文件大小: 96.49MB | 文件类型: RAR
机器学习入门及提高

文件下载

资源详情

[{"title":"( 80 个子文件 96.49MB ) 机器学习算法知识手册.pdf.rar","children":[{"title":"机器学习算法知识手册.pdf","children":[{"title":"机器学习基础","children":[{"title":"梯度下降法的三种形式BGD、SGD以及MBGD.pdf <span style='color:#111;'> 1.35MB </span>","children":null,"spread":false},{"title":"[Math & Algorithm]拉格朗日乘数法.pdf <span style='color:#111;'> 1.36MB </span>","children":null,"spread":false},{"title":"【干货】为什么要对数据进行归一化处理?.pdf <span style='color:#111;'> 790.81KB </span>","children":null,"spread":false},{"title":"非参数正态性检验.pdf <span style='color:#111;'> 978.26KB </span>","children":null,"spread":false},{"title":"机器学习算法常用指标总结.pdf <span style='color:#111;'> 941.25KB </span>","children":null,"spread":false},{"title":"机器学习模型性能评估(三):代价曲线.pdf <span style='color:#111;'> 1.02MB </span>","children":null,"spread":false},{"title":"机器学习算法的随机数据生成.pdf <span style='color:#111;'> 964.83KB </span>","children":null,"spread":false},{"title":"Jacobian矩阵和Hessian矩阵.pdf <span style='color:#111;'> 838.30KB </span>","children":null,"spread":false},{"title":"Q-Q图.pdf <span style='color:#111;'> 401.94KB </span>","children":null,"spread":false},{"title":"正态分布为什么常见.pdf <span style='color:#111;'> 597.43KB </span>","children":null,"spread":false},{"title":"为什么梯度是函数变化最快的方向.pdf <span style='color:#111;'> 1.12MB </span>","children":null,"spread":false},{"title":"【Math】常见的几种最优化方法.pdf <span style='color:#111;'> 1.40MB </span>","children":null,"spread":false},{"title":"从机器学习谈起.pdf <span style='color:#111;'> 3.47MB </span>","children":null,"spread":false},{"title":"机器学习模型评估方法.pdf <span style='color:#111;'> 711.44KB </span>","children":null,"spread":false},{"title":"偏度与峰度的正态性分布判断.pdf <span style='color:#111;'> 632.49KB </span>","children":null,"spread":false},{"title":"机器学习模型性能评估(二):P-R曲线和ROC曲线.pdf <span style='color:#111;'> 628.55KB </span>","children":null,"spread":false},{"title":"机器学习模型性能评估(一):错误率与精度.pdf <span style='color:#111;'> 498.46KB </span>","children":null,"spread":false},{"title":"模型优化的风向标:偏差与方差.pdf <span style='color:#111;'> 1015.26KB </span>","children":null,"spread":false}],"spread":false},{"title":"Python数据科学","children":[{"title":"Pandas _ 详解数据的合并和拼接.pdf <span style='color:#111;'> 1.24MB </span>","children":null,"spread":false},{"title":"清晰易懂的Numpy入门教程.pdf <span style='color:#111;'> 1.29MB </span>","children":null,"spread":false},{"title":"清晰易懂的Numpy进阶教程.pdf <span style='color:#111;'> 2.23MB </span>","children":null,"spread":false},{"title":"精心整理 _ 非常全面的Pandas入门教程.pdf <span style='color:#111;'> 3.21MB </span>","children":null,"spread":false}],"spread":true},{"title":"深度学习","children":[{"title":"计算机视觉 _ 图像描述与注意力机制.pdf <span style='color:#111;'> 1.79MB </span>","children":null,"spread":false},{"title":"【机器学习】神经网络浅讲:从神经元到深度学习(二).pdf <span style='color:#111;'> 2.36MB </span>","children":null,"spread":false},{"title":"【CNN】很详细的讲解什么以及为什么是卷积(Convolution)!.pdf <span style='color:#111;'> 2.76MB </span>","children":null,"spread":false},{"title":"目标检测 _ 清晰易懂的SSD算法原理综述.pdf <span style='color:#111;'> 3.12MB </span>","children":null,"spread":false},{"title":"【机器学习】神经网络浅讲:从神经元到深度学习(一).pdf <span style='color:#111;'> 2.54MB </span>","children":null,"spread":false}],"spread":true},{"title":"监督学习","children":[{"title":"梯度提升树算法原理小结.pdf <span style='color:#111;'> 822.32KB </span>","children":null,"spread":false},{"title":"深入浅出核函数.pdf <span style='color:#111;'> 1.20MB </span>","children":null,"spread":false},{"title":"LightGBM原理之论文详解.pdf <span style='color:#111;'> 1.86MB </span>","children":null,"spread":false},{"title":"深入理解线性回归算法(二):正则项的详细分析.pdf <span style='color:#111;'> 1.13MB </span>","children":null,"spread":false},{"title":"贝叶斯分析:抛硬币的概率真的是1_2吗.pdf <span style='color:#111;'> 799.49KB </span>","children":null,"spread":false},{"title":"XGBoost参数调优小结.pdf <span style='color:#111;'> 1.30MB </span>","children":null,"spread":false},{"title":"决策树算法总结.pdf <span style='color:#111;'> 542.27KB </span>","children":null,"spread":false},{"title":"【实践】随机森林算法参数解释及调优.pdf <span style='color:#111;'> 1013.50KB </span>","children":null,"spread":false},{"title":"支持向量机应用:人脸识别.pdf <span style='color:#111;'> 1.01MB </span>","children":null,"spread":false},{"title":"比较全面的L1和L2正则化的解释.pdf <span style='color:#111;'> 1.37MB </span>","children":null,"spread":false},{"title":"比较全面的Adaboost算法总结(一).pdf <span style='color:#111;'> 946.71KB </span>","children":null,"spread":false},{"title":"支持向量机(三):图解KKT条件和拉格朗日乘子法.pdf <span style='color:#111;'> 1.34MB </span>","children":null,"spread":false},{"title":"比较全面的Adaboost算法总结(二).pdf <span style='color:#111;'> 1013.29KB </span>","children":null,"spread":false},{"title":"比较全面的随机森林算法总结.pdf <span style='color:#111;'> 1.00MB </span>","children":null,"spread":false},{"title":"【干货】集成学习原理总结.pdf <span style='color:#111;'> 695.45KB </span>","children":null,"spread":false},{"title":"支持向量机:SMO算法剖析.pdf <span style='color:#111;'> 1.22MB </span>","children":null,"spread":false},{"title":"scikit-learn 梯度提升树(GBDT)算法实战.pdf <span style='color:#111;'> 901.72KB </span>","children":null,"spread":false},{"title":"XGBoost算法原理小结.pdf <span style='color:#111;'> 1.09MB </span>","children":null,"spread":false},{"title":"scikit-learn K近邻法类库使用小结.pdf <span style='color:#111;'> 1.05MB </span>","children":null,"spread":false},{"title":"AdaBoost项目实战:参数择优与泛化能力.pdf <span style='color:#111;'> 1.28MB </span>","children":null,"spread":false},{"title":"线性分类模型(二):logistic回归模型分析.pdf <span style='color:#111;'> 1.43MB </span>","children":null,"spread":false},{"title":"最大熵模型算法总结.pdf <span style='color:#111;'> 960.94KB </span>","children":null,"spread":false},{"title":"支持向量机(二):算法详细解析.pdf <span style='color:#111;'> 1.29MB </span>","children":null,"spread":false},{"title":"K近邻算法(KNN)原理小结.pdf <span style='color:#111;'> 869.78KB </span>","children":null,"spread":false},{"title":"浅谈频率学派和贝叶斯学派.pdf <span style='color:#111;'> 804.12KB </span>","children":null,"spread":false},{"title":"正则化方法小结.pdf <span style='color:#111;'> 1.06MB </span>","children":null,"spread":false},{"title":"一起学习支持向量机(一):支持向量机的分类思想.pdf <span style='color:#111;'> 721.20KB </span>","children":null,"spread":false},{"title":"浅析感知机学习算法.pdf <span style='color:#111;'> 657.75KB </span>","children":null,"spread":false},{"title":"Hessian矩阵在XGBoost算法的应用小结.pdf <span style='color:#111;'> 671.27KB </span>","children":null,"spread":false},{"title":"浅谈先验分布和后验分布.pdf <span style='color:#111;'> 585.57KB </span>","children":null,"spread":false},{"title":"线性分类模型(一):线性判别模型分析.pdf <span style='color:#111;'> 1.28MB </span>","children":null,"spread":false},{"title":"深入理解线性回归算法(一).pdf <span style='color:#111;'> 1.59MB </span>","children":null,"spread":false},{"title":"线性回归:不能忽视的三个问题.pdf <span style='color:#111;'> 808.45KB </span>","children":null,"spread":false},{"title":"LightGBM算法原理小结.pdf <span style='color:#111;'> 2.21MB </span>","children":null,"spread":false},{"title":"详解xgboost算法的样本不平衡问题.pdf <span style='color:#111;'> 690.19KB </span>","children":null,"spread":false}],"spread":false},{"title":"非监督学习方法","children":[{"title":"用scikit-learn进行LDA降维.pdf <span style='color:#111;'> 637.70KB </span>","children":null,"spread":false},{"title":"DBSCAN聚类算法原理总结.pdf <span style='color:#111;'> 1.23MB </span>","children":null,"spread":false},{"title":"聚类 _ 超详细的性能度量和相似度方法总结.pdf <span style='color:#111;'> 1.05MB </span>","children":null,"spread":false},{"title":"奇异值分解(SVD)原理总结.pdf <span style='color:#111;'> 1.28MB </span>","children":null,"spread":false},{"title":"清晰易懂的条件随机场原理总结.pdf <span style='color:#111;'> 1.87MB </span>","children":null,"spread":false},{"title":"层次聚类算法原理总结.pdf <span style='color:#111;'> 2.11MB </span>","children":null,"spread":false},{"title":"机器学习基础 _ 大话生成模型与判别模型.pdf <span style='color:#111;'> 1.02MB </span>","children":null,"spread":false},{"title":"一文让你完全入门EM算法.pdf <span style='color:#111;'> 1.85MB </span>","children":null,"spread":false},{"title":"清晰易懂的马尔科夫链原理介绍.pdf <span style='color:#111;'> 868.75KB </span>","children":null,"spread":false},{"title":"scikit learn中PCA的使用方法.pdf <span style='color:#111;'> 977.52KB </span>","children":null,"spread":false},{"title":"主成分分析(PCA)原理总结.pdf <span style='color:#111;'> 1.30MB </span>","children":null,"spread":false},{"title":"干货 _ 非常全面的谱聚类算法原理总结.pdf <span style='color:#111;'> 1.86MB </span>","children":null,"spread":false},{"title":"k-means聚类算法原理总结.pdf <span style='color:#111;'> 1.56MB </span>","children":null,"spread":false},{"title":"初学者也能看懂的隐马尔科夫模型介绍.pdf <span style='color:#111;'> 2.02MB </span>","children":null,"spread":false},{"title":"线性判别分析(LDA)原理总结.pdf <span style='color:#111;'> 933.32KB </span>","children":null,"spread":false},{"title":"干货 _ 非常详细的有向图模型与无向图模型原理总结.pdf <span style='color:#111;'> 1.92MB </span>","children":null,"spread":false},{"title":"深入剖析Mean Shift聚类算法原理.pdf <span style='color:#111;'> 1.67MB </span>","children":null,"spread":false},{"title":"局部线性嵌入(LLE)原理总结.pdf <span style='color:#111;'> 1002.56KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明