集成学习:随机森林、GBDT、XGBoost.rar

上传者: 40302264 | 上传时间: 2021-06-12 21:31:21 | 文件大小: 522KB | 文件类型: RAR
机器学习中集成学习的相关案例代码,包含随机森林,GBDTXBoost等理论所所涉及的案例,包含房价预测,宫颈癌预测,分类回归算法,等案例代码。平常多练练,也用于记录一下,学习学习。

文件下载

资源详情

[{"title":"( 17 个子文件 522KB ) 集成学习:随机森林、GBDT、XGBoost.rar","children":[{"title":"[20180311]_集成学习:随机森林、GBDT、XGBoost","children":[{"title":"xgb.model <span style='color:#111;'> 1.11KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"03_Adaboost案例二:Adaboost API algorithm参数取值比较-checkpoint.ipynb <span style='color:#111;'> 72.91KB </span>","children":null,"spread":false},{"title":"01_随机森林案例一:宫颈癌预测-checkpoint.ipynb <span style='color:#111;'> 134.87KB </span>","children":null,"spread":false},{"title":"04_使用XGBoost算法实现波士顿房价预测-checkpoint.ipynb <span style='color:#111;'> 89.86KB </span>","children":null,"spread":false},{"title":"-1. Bagging&Boosting算法应用在回归模型中-checkpoint.ipynb <span style='color:#111;'> 6.33KB </span>","children":null,"spread":false},{"title":"02_Adaboost案例一:Adaboost分类算法-checkpoint.ipynb <span style='color:#111;'> 54.90KB </span>","children":null,"spread":false}],"spread":true},{"title":"04_使用XGBoost算法实现波士顿房价预测.ipynb <span style='color:#111;'> 89.86KB </span>","children":null,"spread":false},{"title":"xgb.fmap <span style='color:#111;'> 97B </span>","children":null,"spread":false},{"title":"datas","children":[{"title":"boston_housing.data <span style='color:#111;'> 47.93KB </span>","children":null,"spread":false},{"title":"newdata.csv <span style='color:#111;'> 176.32KB </span>","children":null,"spread":false},{"title":"yinzi.csv <span style='color:#111;'> 591B </span>","children":null,"spread":false},{"title":"iris.data <span style='color:#111;'> 4.44KB </span>","children":null,"spread":false},{"title":"risk_factors_cervical_cancer.csv <span style='color:#111;'> 99.67KB </span>","children":null,"spread":false}],"spread":true},{"title":"02_Adaboost案例一:Adaboost分类算法.ipynb <span style='color:#111;'> 54.90KB </span>","children":null,"spread":false},{"title":"-1. Bagging&Boosting算法应用在回归模型中.ipynb <span style='color:#111;'> 6.98KB </span>","children":null,"spread":false},{"title":"01_随机森林案例一:宫颈癌预测.ipynb <span style='color:#111;'> 134.87KB </span>","children":null,"spread":false},{"title":"03_Adaboost案例二:Adaboost API algorithm参数取值比较.ipynb <span style='color:#111;'> 72.91KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明